Analytical Models for Square Diaphragm Piezoresistive NEMS Pressure Sensor

被引:0
作者
Chaurasia, Saloni [1 ]
Chaurasia, B. S. [2 ]
机构
[1] Motilal Nehru Natl Inst Technol, Dept Elect & Commun Engn, Allahabad 211004, Uttar Pradesh, India
[2] Indian Inst Technol BHU, Dept Elect Engn, Varanasi 221005, Uttar Pradesh, India
来源
2013 STUDENTS CONFERENCE ON ENGINEERING AND SYSTEMS (SCES): INSPIRING ENGINEERING AND SYSTEMS FOR SUSTAINABLE DEVELOPMENT | 2013年
关键词
nanosensor; NEMS; piezoresistive; pressure;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Nano Electromechanical Systems (NEMS) sensors are the next miniaturization step from Micro Electromechanical System (MEMS) devices. These devices form promising future generation of MEMS technology due to probable benefits of greater efficiency, extremely reduced size and lower cost of production. In the present work also modeling of square diaphragm piezoresistive NEMS pressure sensor has been done using the available analytical models from the previous work of the authors for MEMS pressure sensor after their optimization to match with Finite Element Methods (FEM) simulation results. The optimization is done for different aspect (thickness / length) ratios of the diaphragm due to dependence of the design parameters on aspect ratios. This work presents a set of tools to design NEMS pressure sensors for all feasible aspect ratios and may be found useful to the designers and researchers of pressure sensor.
引用
收藏
页数:6
相关论文
共 17 条
[1]   A design tool for pressure microsensors based on FEM simulations [J].
Bistue, G ;
Elizalde, JG ;
GarciaAlonso, S ;
Castano, E ;
Gracia, FJ ;
GarciaAlonso, A .
SENSORS AND ACTUATORS A-PHYSICAL, 1997, 62 (1-3) :591-594
[2]  
Bui Tung Thanh, 2009 IEEE INT S MICR, P462
[3]  
Chaurasia S., 2012 IEEE STUD C ENG, P1
[4]  
Drittenbass S., 2009 MEMS IEEE INT C, P575
[5]   Analytical Solutions of Sensitivity for Pressure Microsensors [J].
Gong, Shih-Chin ;
Lee, Chengkuo .
IEEE SENSORS JOURNAL, 2001, 1 (04) :340-344
[6]  
James E., 2004, INTRODUCTION NANOSCA
[8]   A novel doping technology for ultra-shallow junction fabrication: boron diffusion from boron-adsorbed layer by rapid thermal annealing [J].
Kim, KS ;
Song, YH ;
Park, KT ;
Kurino, H ;
Matsuura, T ;
Hane, K ;
Koyanagi, M .
THIN SOLID FILMS, 2000, 369 (1-2) :207-212
[9]  
Madou MarcJ., 2002, Fundamentals of Microfabrication: The Science of Miniaturization, VSecond
[10]   First-principles study on piezoresistance effect in silicon nanowires [J].
Nakamura, Koichi ;
Isono, Yoshitada ;
Toriyama, Toshiyuki .
JAPANESE JOURNAL OF APPLIED PHYSICS, 2008, 47 (06) :5132-5138