BLOW-UP SOLUTIONS AND STRONG INSTABILITY OF GROUND STATES FOR THE INHOMOGENEOUS NONLINEAR SCHRODINGER EQUATION

被引:10
作者
Ardila, Alex H. [1 ]
Cardoso, Mykael [2 ]
机构
[1] Univ Fed Minas Gerais ICEx, ICEx UFMG, Dept Math, Caixa Postal 702, BR-30123970 Belo Horizonte, MG, Brazil
[2] Univ Fed Piaui, CCN, Dept Math, BR-64049550 Teresina, PI, Brazil
关键词
Nonlinear Schrodinger equation; global existence; blow-up; stability; STABILITY; WAVES; UNIQUENESS; EXISTENCE;
D O I
10.3934/cpaa.2020259
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using variational methods we study the stability and strong instability of ground states for the focusing inhomogeneous nonlinear Schrodinger equation (INLS) i partial derivative(t)u +Delta u + vertical bar x vertical bar(-b)vertical bar u vertical bar(p-1) u = 0. We construct two kinds of invariant sets under the evolution flow of (INLS). Then we show that the solution of (INLS) is global and bounded in H-1 (R-N) in the first kind of the invariant sets, while the solution blow-up in finite time in the other invariant set. Consequently, we prove that if the nonlinearity is L-2-supercritical, then the ground states are strongly unstable by blow-up.
引用
收藏
页码:101 / 119
页数:19
相关论文
共 18 条
  • [1] Agrawal G. P., 2007, NONLINEAR FIBER OPTI
  • [2] Some qualitative studies of the focusing inhomogeneous Gross-Pitaevskii equation
    Ardila, Alex H.
    Van Duong Dinh
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (03):
  • [3] Cazenave Th., 2003, COURANT LECT NOTES M
  • [4] Chen JQ, 2007, DISCRETE CONT DYN-B, V8, P357
  • [5] On a class of nonlinear inhomogeneous Schrödinger equation
    Chen J.
    [J]. Journal of Applied Mathematics and Computing, 2010, 32 (01) : 237 - 253
  • [6] Combet V, 2016, J EVOL EQU, V16, P483, DOI 10.1007/s00028-015-0309-z
  • [7] deBouard A., 2015, ANN HENRI POINCARE, V6, P1157
  • [8] ON BLOW-UP CRITERION FOR THE NONLINEAR SCHRODINGER EQUATION
    Du, Dapeng
    Wu, Yifei
    Zhang, Kaijun
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (07) : 3639 - 3650
  • [9] Global well-posedness and blow-up on the energy space for the inhomogeneous nonlinear Schrodinger equation
    Farah, Luiz G.
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2016, 16 (01) : 193 - 208
  • [10] Stability of solitary waves for nonlinear Schrodinger equations with inhomogeneous nonlinearities
    Fibich, G
    Wang, XP
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2003, 175 (1-2) : 96 - 108