Dynamic behavior of a rotating gliding arc plasma in nitrogen: effects of gas flow rate and operating current

被引:24
作者
Zhang, Hao [1 ,2 ]
Zhu, Fengsen [2 ]
Li, Xiaodong [2 ]
Du, Changming [3 ]
机构
[1] Zhejiang Univ Technol, Coll Mech Engn, Inst Energy & Power Engn, Hangzhou 310014, Zhejiang, Peoples R China
[2] Zhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Zhejiang, Peoples R China
[3] Sun Yat Sen Univ, Sch Environm Sci & Engn, Guangzhou 510275, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
rotating gliding arc (RGA); electrical characteristics; gas flow rate; operating current; rotation mode; HYDROGEN-PRODUCTION; PARTIAL OXIDATION; METHANE; DECOMPOSITION; FLUCTUATIONS; DESTRUCTION; DISCHARGES; REACTOR; ARGON;
D O I
10.1088/2058-6272/aa57f3
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The effects of feed gas flow rate and operating current on the electrical characteristics and dynamic behavior of a rotating gliding arc (RGA) plasma codriven by a magnetic field and tangential flow were investigated. The operating current has been shown to significantly affect the time-resolved voltage waveforms of the discharge, particularly at flow rate = 2 1 min(-1). When the current was lower than 140 mA, sinusoidal waveforms with regular variation periods of 13.5-17.0 ms can be observed (flow rate -21 min(-1)). The restrike mode characterized by serial sudden drops of voltage appeared under all studied conditions. Increasing the flow rate from 8 to 12 l min(-1) (at the same current) led to a shift of arc rotation mode which would then result in a significant drop of discharge voltage (around 120-200 V). For a given flow rate, the reduction of current resulted in a nearly linear increase of voltage.
引用
收藏
页数:6
相关论文
共 49 条
[1]   Modeling plasma-based CO2 conversion: crucial role of the dissociation cross section [J].
Bogaerts, Annemie ;
Wang, Weizong ;
Berthelot, Antonin ;
Guerra, Vasco .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2016, 25 (05)
[2]   Similarity Relations of Power-Voltage Characteristics for Tornado Gliding Arc in Plasma-Assisted Combustion Processes [J].
Bublievsky, Alexandr F. ;
Sagas, Julio C. ;
Gorbunov, Andrei V. ;
Maciel, Homero S. ;
Bublievsky, Dmitry A. ;
Petraconi Filho, Gilberto ;
Lacava, Pedro T. ;
Halinouski, Anton A. ;
Testoni, Giorgio E. .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2015, 43 (05) :1742-1746
[3]  
Cooper M, 2008, P 35 IEEE INT C PLAS
[4]   Time-resolved imaging of anodic arc root behavior during fluctuations of a dc plasma spraying torch [J].
Dorier, JL ;
Gindrat, M ;
Hollenstein, C ;
Salito, A ;
Loch, M ;
Barbezat, G .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2001, 29 (03) :494-501
[5]   Decontamination of Bacteria by Gas-Liquid Gliding Arc Discharge: Application to Escherichia coli [J].
Du, Changming ;
Tang, Jun ;
Mo, Jianmin ;
Ma, Danyan ;
Wang, Jing ;
Wang, Kui ;
Zeng, Ying .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2014, 42 (09) :2221-2228
[6]   Arc instabilities in a plasma spray torch [J].
Duan, Z ;
Heberlein, J .
JOURNAL OF THERMAL SPRAY TECHNOLOGY, 2002, 11 (01) :44-51
[7]   Gliding arc gas discharge [J].
Fridman, A ;
Nester, S ;
Kennedy, LA ;
Saveliev, A ;
Mutaf-Yardimci, O .
PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 1999, 25 (02) :211-231
[8]   Combustion-assisted plasma in fuel conversion [J].
Gutsol, A. ;
Rabinovich, A. ;
Fridman, A. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2011, 44 (27)
[9]   Gliding arc in tornado using a reverse vortex flow [J].
Kalra, CS ;
Cho, YI ;
Gutsol, A ;
Fridman, A ;
Rufael, TS .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2005, 76 (02) :025110-1
[10]   Gliding arc discharges as a source of intermediate plasma for methane partial oxidation [J].
Kalra, CS ;
Gutsol, AF ;
Fridman, AA .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2005, 33 (01) :32-41