Effect of horizontal temperature difference on Marangoni-thermocapillary convection in a shallow annular pool

被引:4
|
作者
Wang Fei [1 ]
Peng Lan [1 ]
Zhang Quan-Zhuang [1 ]
Liu Jia [1 ]
机构
[1] Chongqing Univ, Coll Power Engn, Key Lab Low Grade Energy Utilizat Technol & Syst, Minist Educ, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金;
关键词
Marangoni-thermocapillary convection; bidirectional temperature differences; shallow annular pool; oscillatory flow; HYDROTHERMAL WAVES; INSTABILITY; SURFACE; LAYER; FLOW;
D O I
10.7498/aps.64.140202
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The surface tension driven convection with the bidirectional temperature differences plays a very important role in many natural processes. However, most of the previous researches have focused only on the convection induced by a unidirectional temperature difference. In this paper, under the coexistence of bidirectional temperature differences, we conduct a series of numerical simulations to investigate the effect of horizontal temperature difference on the Marangoni-thermocapillary convection in a shallow annular pool. The critical values of bottom heat flux Q(cri) for transition from an axisymmetric steady flow to a three-dimensional unsteady flow at different values of Ma are determined. The result shows the horizontal temperature difference has a negative effect on the stability of Marangoni-thermocapillary convection. The simulation predicts two new state evolutions which do not appear in the convection with a unidirectional temperature difference. When Q is less than the Q(cri) value of 2.4 x 10(-3), the Marangoni convection without horizontal temperature difference is steady and axisymmetric. When a small horizontal temperature difference is imposed, the convection called basic flow keeps steady and axisymmetric. When the value of Ma exceeds a certain threshold value Ma(cri), the convection becomes a three-dimensional unsteady flow. After this unsteady flow happens, with the increase of Ma, the surface temperature fluctuation evolves from a punctate wave to a hydrothermal wave, and finally to a chaotic wave. Accordingly, the temperature oscillation with time is a periodically regular oscillation at first, then turns into a chaotic mess. When Q is larger than the corresponding Q(cri) value of 2.4 x 10(-3), without a horizontal difference, the convection is unsteady and no basic flow exists in the variation process of Ma. With the increase of Ma, the surface temperature fluctuation evolves from a double hydrothermal wave to a single hydrothermal wave, and finally to a chaotic wave. The vertical heat transfer and horizontal temperature difference have different effects on the fluid, and their separate roles in driving fluid are determined. The bottom heat flux causes the surface fluid to flow in two opposite radial directions as the highest surface temperature is located in the middle region, while the horizontal temperature difference induces the surface fluid to flow in a single radial direction as the highest surface temperature appears at the hot wall. The combined action of these two forces generates different flows. The increase of horizontal temperature difference leads to the highest surface temperature, which originally appears in the middle region due to the bottom heat flux, and moves toward the hot wall. In this process, the horizontal temperature difference has a positive effect on the enhancement of flow near inner wall but it has a negative effect on the flow near outer wall.
引用
收藏
页数:8
相关论文
共 22 条
  • [1] A numerical study of the longitudinal thermoconvective rolls in a mixed convection flow in a horizontal channel with a free surface
    Bammou, Lahcen
    El Omari, Kamal
    Blancher, Serge
    Le Guer, Yves
    Benhamou, Brahim
    Mediouni, Touria
    [J]. INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2013, 42 : 265 - 277
  • [2] Benard H, 1901, ANN CHIM PHYS, V23, P62
  • [3] Two dimensional hydrothermal waves in an extended cylindrical vessel
    Garnier, N
    Chiffaudel, A
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2001, 19 (01): : 87 - 95
  • [4] Asymptotic solution of thermal-solutal capillary convection in a slowly rotating shallow annular pool of two components solution
    Gong Zhen-Xing
    Li You-Rong
    Peng Lan
    Wu Shuang-Ying
    Shi Wan-Yuan
    [J]. ACTA PHYSICA SINICA, 2013, 62 (04)
  • [5] Onset of Rayleigh-Marangoni convection in a cylindrical annulus heated from below
    Guo, Weidong
    Narayanan, Ranga
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2007, 314 (02) : 727 - 732
  • [6] Instability analysis of Marangoni convection for absorption process accompanied by heat transfer
    Kim, J
    Choi, CK
    Kang, YT
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2004, 47 (10-11) : 2395 - 2402
  • [7] Three-dimensional flow instabilities in a thermocapillary-driven cavity
    Kuhlmann, H. C.
    Albensoeder, S.
    [J]. PHYSICAL REVIEW E, 2008, 77 (03):
  • [8] Role of interface deformations in Benard-Marangoni instability
    Lebon, G
    Dauby, PC
    Regnier, VC
    [J]. ACTA ASTRONAUTICA, 2001, 48 (5-12) : 617 - 627
  • [9] Effect of vertical heat transfer on thermocapillary convection in an open shallow rectangular cavity
    Li, You-Rong
    Zhang, Hong-Ru
    Wu, Chun-Mei
    Xu, Jin-Liang
    [J]. HEAT AND MASS TRANSFER, 2012, 48 (02) : 241 - 251
  • [10] Three-dimensional oscillatory flow in a thin annular pool of silicon melt
    Li, YR
    Imaishi, N
    Azami, T
    Hibiya, T
    [J]. JOURNAL OF CRYSTAL GROWTH, 2004, 260 (1-2) : 28 - 42