Prediction of DNA sequences using adaptative neuro-fuzzy inference system

被引:2
|
作者
Mihi, Assia [1 ]
Boucenna, Nourredine [2 ]
Ben Mahammmed, Kheir [3 ]
机构
[1] Mohammed Kheider Univ, Fac Engn, Dept Elect Engn, Ave Sidi Okba, Biskra, Algeria
[2] Mohamed El Bachir El Ibrahimi Univ, Fac Engn, Dept Elect, Bordj Bou Arreridj, El Annasser, Algeria
[3] Ferhat Abesse Univ, Fac Engn, Dept Elect, El Maabouda, Setif, Algeria
关键词
DNA sequence; adaptative neuro-fuzzy inference system (ANFIS); fuzzy logic; wavelet transform; genomic signal; GENE; BIOINFORMATICS;
D O I
10.1142/S179352451850047X
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Accurate prediction and detection of the DNA regions or their underlying structural patterns are constant difficulties for researchers. Feature extraction and functional classification of genomic sequences is an interesting area of research. Many computational techniques have already been applied including the artificial neural network (ANN), nonlinear model, spectrogram and statistical techniques. In this paper, some features are extracted from the wavelet coefficient and second set of features are extracted from the frequency of transition of nucleotides. These two features sets are examined. The purpose was to investigate the abilities of these parameters to predict critical segment in the DNA sequence. The neuro-fuzzy system was used for prediction. The performance of the neuro-fuzzy system was evaluated in terms of training performance and prediction accuracies. Two genomic sequences of the classes: prokaryotic and eukaryotic were used, as an example, (Escherichia coli) and (Caenorhabditis elegans) sequences were selected.
引用
收藏
页数:38
相关论文
共 50 条