Adjoint and Self-Adjoint Boundary Value Problems on a Geometric Graph

被引:4
作者
Zavgorodnij, M. G. [1 ]
机构
[1] Voronezh State Univ, Voronezh 394693, Russia
关键词
Bilinear Form; Arbitrary Function; Boundary Vertex; Geometric Graph; Interior Vertex;
D O I
10.1134/S001226611404003X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider boundary value problems of arbitrary order for linear differential equations on a geometric graph. Solutions of boundary value problems are coordinated at the interior vertices of the graph and satisfy given conditions at the boundary vertices. For considered boundary value problems, we construct adjoint boundary value problems and obtain a self-adjointness criterion. We describe the structure of the solution set of homogeneous self-adjoint boundary value problems with alternating coefficients of a differential equation and obtain non-degeneracy conditions for these boundary value problems.
引用
收藏
页码:441 / 452
页数:12
相关论文
共 14 条
[1]  
Naimark M. A., 2010, LINEINYE DIFFERENTSI
[2]  
Pokornyi Yu.V., 1989, DIFF URAVN, V25, P1141
[3]  
Pokornyi Yu.V., 1989, DOKL AKAD NAUK SSSR, V309, P1306
[4]  
Pokornyi Yu.V., 2009, OSTSILLYATSIONNYI ME
[5]  
POKORNYI YV, 2004, DIFFERENTSIALNYE URA
[6]  
Zavgorodnii M. G., 2000, MAT MODELIROVANIE IN, P59
[7]  
ZAVGORODNII MG, 1994, DOKL AKAD NAUK+, V335, P281
[8]  
Zavgorodnii MG., 2008, Investigations in differential equations and mathematical modelling, P88
[9]  
Zavgorodnij M.G., 1991, USP MAT NAUK, V46, P199
[10]  
Zavgorodnij M.G., 2007, VESTNIK VORONEZH GOS, V3, P82