Terminator: An Efficient and Light-weight Fault Localization Framework

被引:0
|
作者
Li, Yuxing [1 ]
Zheng, Hu [2 ]
Huang, Chengqiang [2 ]
Pei, Ke [2 ]
Li, Jinghui [2 ]
Huang, Longbo [1 ]
机构
[1] Tsinghua Univ, Inst Interdisciplinary Informat Sci IIIS, Beijing, Peoples R China
[2] Huawei Technol Co Ltd, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
Network service and management; fault localization; enhancement;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Network fault localization has always been a major challenge for efficient data center operation. In this paper, we propose a faulty link localization framework named "Terminator," which provides an efficient hierarchical link probing scheme for fault localization. With both local and global probing, Terminator conserves the spine link bandwidth and localizes faulty link with high accuracy. We implement a prototype of Terminator and show that it outperforms existing benchmarks, including 007 [7], TOMO [5], PLL [6], and NetBouncer [2]. In particular, Terminator achieves an average of 37.5% internal problem-solving rate and improves the localization accuracy of 007 to nearly 100% in fat-tree topologies.
引用
收藏
页码:580 / 585
页数:6
相关论文
共 50 条
  • [21] Light-weight UIMS
    Read, Robert L.
    Smith, Martin L.
    Software - Practice and Experience, 1991, 21 (01) : 13 - 33
  • [22] LIGHT-WEIGHT REFRACTOMETER
    HAY, DR
    MARTIN, HC
    TURNER, HE
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1961, 32 (06): : 693 - &
  • [23] Fibonet: A Light-weight and Efficient Neural Network for Image Segmentation
    Wu, Ruohao
    Xiao, Xi
    Hu, Guangwu
    Zhao, Hanqing
    Zhang, Han
    Peng, Yongqing
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 1345 - 1349
  • [24] Light-weight plastination
    Steinke, Hanno
    Rabi, Suganthy
    Saito, Toshiyuki
    Sawutti, Alimjan
    Miyaki, Takayoshi
    Itoh, Masahiro
    Spanel-Borowski, Katharina
    ANNALS OF ANATOMY-ANATOMISCHER ANZEIGER, 2008, 190 (05) : 428 - 431
  • [25] An Efficient Light-weight Network for Fast Reconstruction on MR Images
    Zhen, Bowen
    Zheng, Yingjie
    Qiu, Bensheng
    CURRENT MEDICAL IMAGING, 2021, 17 (11) : 1374 - 1384
  • [26] Efficient Light-weight Deep Learning Models for Drowsiness Detection
    Rajak, Anjali
    Hatwar, Pranshul
    Tiwari, Animesh
    Sahu, Gaurav
    Tripathi, Rakesh
    2024 5TH INTERNATIONAL CONFERENCE ON INNOVATIVE TRENDS IN INFORMATION TECHNOLOGY, ICITIIT 2024, 2024,
  • [27] A Light-Weight Semantic Map for Visual Localization towards Autonomous Driving
    Qin, Tong
    Zheng, Yuxin
    Chen, Tongqing
    Chen, Yilun
    Su, Qing
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 11248 - 11254
  • [28] Tarsier: A Light-Weight Framework for Visualizing Gravitational-Wave Transients
    Deligiannidis, Leonidas
    Yu, Chen-Hsiang
    PROCEEDINGS 2017 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI), 2017, : 748 - 750
  • [29] Light-weight kernel instrumentation framework using dynamic binary translation
    Lee, Dongwoo
    Kim, Inhyuk
    Kim, Jeehong
    Jun, Hyung Kook
    Kim, Won Tae
    Lee, Sangwon
    Eom, Young Ik
    JOURNAL OF SUPERCOMPUTING, 2013, 66 (03): : 1613 - 1628
  • [30] A Light-weight Online Learning Framework for Network Traffic Abnormality Detection
    Wang, Yitu
    Dong, Runqi
    Nakachi, Takayuki
    Wang, Wei
    2023 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC, 2023,