Singular limit of an Allen-Cahn equation with nonlinear diffusion

被引:1
作者
El Kettani, Perla [1 ]
Funaki, Tadahisa [2 ,3 ]
Hilhorst, Danielle [4 ,5 ]
Park, Hyunjoon [6 ]
Sethuraman, Sunder [7 ]
机构
[1] Univ Toulon & Var, Toulon, France
[2] Univ Tokyo, Grad Sch Math Sci, Dept Math, Tokyo, Japan
[3] Waseda Univ, Dept Math, Tokyo, Japan
[4] Paris Saclay Univ, CNRS, Orsay, France
[5] Paris Saclay Univ, Lab Math, Orsay, France
[6] Korea Adv Inst Sci & Technol, Dept Math Sci, Daejeon, South Korea
[7] Univ Arizona, Dept Math, Tucson, AZ USA
关键词
Allen-Cahn equation; mean curvature flow; singular limit; nonlinear diffusion; interface; surface tension; MOTION; GENERATION; INTERFACE;
D O I
10.2140/tunis.2022.4.719
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider an Allen-Cahn equation with nonlinear diffusion, motivated by the study of the scaling limit of certain interacting particle systems. We investigate its singular limit and show the generation and propagation of an interface in the limit. The evolution of this limit interface is governed by mean curvature flow with a novel, homogenized speed in terms of a surface tension-mobility parameter emerging from the nonlinearity in our equation.
引用
收藏
页码:719 / 754
页数:37
相关论文
共 17 条
  • [1] Generation of Interface for an Allen-Cahn Equation with Nonlinear Diffusion
    Alfaro, M.
    Hilhorst, D.
    [J]. MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2010, 5 (05) : 1 - 12
  • [2] The singular limit of the Allen-Cahn equation and the FitzHugh-Nagumo system
    Alfaro, Matthieu
    Hilhorst, Danielle
    Matano, Hiroshi
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (02) : 505 - 565
  • [3] ON THE VALIDITY OF FORMAL ASYMPTOTIC EXPANSIONS IN ALLEN-CAHN EQUATION AND FITZHUGH-NAGUMO SYSTEM WITH GENERIC INITIAL DATA
    Alfaro, Matthieu
    Matano, Hiroshi
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2012, 17 (06): : 1639 - 1649
  • [4] MICROSCOPIC THEORY FOR ANTIPHASE BOUNDARY MOTION AND ITS APPLICATION TO ANTIPHASE DOMAIN COARSENING
    ALLEN, SM
    CAHN, JW
    [J]. ACTA METALLURGICA, 1979, 27 (06): : 1085 - 1095
  • [5] Berestycki H, 2007, CONTEMP MATH, V446, P101
  • [6] GENERATION AND PROPAGATION OF INTERFACES FOR REACTION DIFFUSION-EQUATIONS
    CHEN, XF
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1992, 96 (01) : 116 - 141
  • [7] Dal Passo R., 1999, INTERFACE FREE BOUND, V1, P199, DOI DOI 10.4171/IFB/9
  • [8] Mean Curvature Interface Limit from Glauber plus Zero-Range Interacting Particles
    El Kettani, Perla
    Funaki, Tadahisa
    Hilhorst, Danielle
    Park, Hyunjoon
    Sethuraman, Sunder
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2022, 394 (03) : 1173 - 1223
  • [9] MOTION BY CURVATURE IN GENERALIZED CAHN-ALLEN MODELS
    FIFE, PC
    LACEY, AA
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1994, 77 (1-2) : 173 - 181
  • [10] Exponentially slow motion of interface layers for the one-dimensional Allen-Cahn equation with nonlinear phase-dependent diffusivity
    Folino, Raffaele
    Hernandez Melo, Cesar A.
    Lopez Rios, Luis
    Plaza, Ramon G.
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (04):