Size-dependent elasticity of nanocrystalline titania

被引:54
作者
Chen, Bin [1 ]
Zhang, Hengzhong [1 ]
Dunphy-Guzman, K. A. [1 ,2 ]
Spagnoli, D. [1 ]
Kruger, M. B. [3 ]
Muthu, D. V. S. [3 ,4 ]
Kunz, M. [5 ]
Fakra, Sirine [5 ]
Hu, J. Z. [6 ]
Guo, Q. Z. [6 ]
Banfield, Jillian F. [1 ]
机构
[1] Univ Calif Berkeley, Berkeley, CA 94720 USA
[2] Sandia Natl Labs, Dept Syst Studies, Livermore, CA 94551 USA
[3] Univ Missouri, Dept Phys, Kansas City, MO 64110 USA
[4] Indian Inst Sci, Dept Phys, Bangalore 560012, Karnataka, India
[5] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA
[6] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA
关键词
compressibility; dislocations; elastic moduli; elasticity; hardening; high-pressure effects; nanoparticles; particle size; semiconductor materials; titanium compounds; X-ray diffraction; MOLECULAR-DYNAMICS SIMULATION; HALL-PETCH RELATION; MECHANICAL-BEHAVIOR; IRON; COMPRESSIBILITY; DISLOCATIONS; POLYMORPHS; PRESSURES; STABILITY; CONSTANTS;
D O I
10.1103/PhysRevB.79.125406
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Synchrotron-based high-pressure x-ray diffraction measurements indicate that compressibility, a fundamental materials property, can have a size-specific minimum value. The bulk modulus of nanocrystalline titania has a maximum at particle size of 15 nm. This can be explained by dislocation behavior because very high dislocation contents can be achieved when shear stress induced within nanoparticles counters the repulsion between dislocations. As particle size decreases, compression increasingly generates dislocation networks (hardened by overlap of strain fields) that shield intervening regions from external pressure. However, when particles become too small to sustain high dislocation concentrations, elastic stiffening declines. The compressibility has a minimum at intermediate sizes.
引用
收藏
页数:8
相关论文
共 58 条
[1]  
[Anonymous], PHYS PROPERTIES CRYS
[2]  
[Anonymous], 1982, OXIDE HDB
[3]   High-pressure polymorphs of anatase TiO2 [J].
Arlt, T ;
Bermejo, M ;
Blanco, MA ;
Gerward, L ;
Jiang, JZ ;
Olsen, JS ;
Recio, JM .
PHYSICAL REVIEW B, 2000, 61 (21) :14414-14419
[4]   STRESS AT WHICH DISLOCATIONS ARE GENERATED AT A PARTICLE-MATRIX INTERFACE [J].
ASHBY, MF ;
GELLES, SH ;
TANNER, LE .
PHILOSOPHICAL MAGAZINE, 1969, 19 (160) :757-&
[5]   Softening caused by profuse shear banding in a bulk metallic glass [J].
Bei, H ;
Xie, S ;
George, EP .
PHYSICAL REVIEW LETTERS, 2006, 96 (10)
[6]   FINITE STRAIN ISOTHERM AND VELOCITIES FOR SINGLE-CRYSTAL AND POLYCRYSTALLINE NACL AT HIGH-PRESSURES AND 300-DEGREE-K [J].
BIRCH, F .
JOURNAL OF GEOPHYSICAL RESEARCH, 1978, 83 (NB3) :1257-1268
[7]  
Born M., 1954, DYNAMICAL THEORY CRY
[8]   What is behind the inverse Hall-Petch effect in nanocrystalline materials? [J].
Carlton, C. E. ;
Ferreira, P. J. .
ACTA MATERIALIA, 2007, 55 (11) :3749-3756
[9]  
*CERAM RES LTD, AZO J MAT ONL
[10]   The compressibility of nanocrystalline nickel [J].
Chen, B ;
Penwell, D ;
Kruger, MB .
SOLID STATE COMMUNICATIONS, 2000, 115 (04) :191-194