Convergence rate of the vanishing viscosity limit for the Hunter-Saxton equation in the half space

被引:1
作者
Peng, Lei [1 ]
Li, Jingyu [1 ]
Mei, Ming [2 ,3 ]
Zhang, Kaijun [1 ]
机构
[1] Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
[2] Champlain Coll St Lambert, Dept Math, St Lambert, PQ J4P 3P2, Canada
[3] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 2K6, Canada
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
Hunter-Saxton equation; Asymptotic analysis; Boundary layer; Well-posedness; Energy method; Vanishing viscosity limit; NAVIER-STOKES EQUATIONS; HYPERBOLIC VARIATIONAL EQUATION; BOUNDARY-LAYERS; ZERO-VISCOSITY; ASYMPTOTIC EQUATION; GLOBAL EXISTENCE; ANALYTIC SOLUTIONS; WEAK SOLUTIONS; UNIQUENESS; PERTURBATIONS;
D O I
10.1016/j.jde.2022.04.032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the asymptotic behavior of the solutions to an initial boundary value problem of the Hunter-Saxton equation in the half space when the viscosity tends to zero. By means of the asymptotic analysis with multiple scales, we first formally derive the equations for boundary layer profiles. Next, we study the well-posedness of the equations for the boundary layer profiles by using the compactness argu-ment. Moreover, we construct an accurate approximate solution and use the energy method to obtain the convergence results of the vanishing viscosity limit.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:202 / 227
页数:26
相关论文
共 41 条
[21]  
Oleinik O. A., 1963, Dokl. Akad. Nauk SSSR, P585
[22]   Global Existence and the Decay of Solutions to the Prandtl System with Small Analytic Data [J].
Paicu, Marius ;
Zhang, Ping .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2021, 241 (01) :403-446
[23]  
Prandtl L., 1904, VERHANDLUNG 3 INTERN, P484491
[24]   Vanishing Shear Viscosity and Boundary Layer for the Navier-Stokes Equations with Cylindrical Symmetry [J].
Qin, Xulong ;
Yang, Tong ;
Yao, Zheng-an ;
Zhou, Wenshu .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 216 (03) :1049-1086
[25]   Characteristic boundary layers in real vanishing viscosity limits [J].
Rousset, F .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 210 (01) :25-64
[26]   Zero viscosity limit for analytic solutions, of the Navier-Stokes equation on a half-space. I. Existence for Euler and Prandtl equations [J].
Sammartino, M ;
Caflisch, RE .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 192 (02) :433-461
[27]   Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space. II. Construction of the Navier-Stokes solution [J].
Sammartino, M ;
Caflisch, RE .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 192 (02) :463-491
[28]  
Schlichting Herman, 1960, Boundary Layer Theory
[29]   Boundary layer stability in real vanishing viscosity limit [J].
Serre, D ;
Zumbrun, K .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 221 (02) :267-292
[30]   Boundary layers associated with incompressible Navier-Stokes equations: The noncharacteristic boundary case [J].
Temam, R ;
Wang, X .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 179 (02) :647-686