Convergence rate of the vanishing viscosity limit for the Hunter-Saxton equation in the half space

被引:1
作者
Peng, Lei [1 ]
Li, Jingyu [1 ]
Mei, Ming [2 ,3 ]
Zhang, Kaijun [1 ]
机构
[1] Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
[2] Champlain Coll St Lambert, Dept Math, St Lambert, PQ J4P 3P2, Canada
[3] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 2K6, Canada
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
Hunter-Saxton equation; Asymptotic analysis; Boundary layer; Well-posedness; Energy method; Vanishing viscosity limit; NAVIER-STOKES EQUATIONS; HYPERBOLIC VARIATIONAL EQUATION; BOUNDARY-LAYERS; ZERO-VISCOSITY; ASYMPTOTIC EQUATION; GLOBAL EXISTENCE; ANALYTIC SOLUTIONS; WEAK SOLUTIONS; UNIQUENESS; PERTURBATIONS;
D O I
10.1016/j.jde.2022.04.032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the asymptotic behavior of the solutions to an initial boundary value problem of the Hunter-Saxton equation in the half space when the viscosity tends to zero. By means of the asymptotic analysis with multiple scales, we first formally derive the equations for boundary layer profiles. Next, we study the well-posedness of the equations for the boundary layer profiles by using the compactness argu-ment. Moreover, we construct an accurate approximate solution and use the energy method to obtain the convergence results of the vanishing viscosity limit.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:202 / 227
页数:26
相关论文
共 41 条
[1]  
Alexandre R, 2015, J AM MATH SOC, V28, P745
[2]  
[Anonymous], 1997, Annali della Scuola normale superiore di Pisa, Classe di scienze
[3]   Global solutions of the Hunter-Saxton equation [J].
Bressan, A ;
Constantin, A .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 37 (03) :996-1026
[4]   On the cauchy problem for the periodic Camassa-Holm equation [J].
Constantin, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1997, 141 (02) :218-235
[5]   Transformations for the Camassa-Holm equation, its high-frequency limit and the Sinh-Gordon equation [J].
Dai, HH ;
Pavlov, M .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1998, 67 (11) :3655-3657
[6]   Boundary layers in parabolic perturbations of scalar conservation laws [J].
Frid, H ;
Shelukhin, V .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2004, 55 (03) :420-434
[7]   Boundary layers for the Navier-Stokes equations of compressible fluids [J].
Frid, H ;
Shelukhin, V .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 208 (02) :309-330
[8]   Boundary layers for viscous perturbations of noncharacteristic quasilinear hyperbolic problems [J].
Grenier, E ;
Gues, O .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 143 (01) :110-146
[9]  
Grenier E, 2000, COMMUN PUR APPL MATH, V53, P1067
[10]  
Holmes Mark H., 2012, Introduction to Perturbation Methods, V20