Convergence rate of the vanishing viscosity limit for the Hunter-Saxton equation in the half space
被引:1
|
作者:
Peng, Lei
论文数: 0引用数: 0
h-index: 0
机构:
Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R ChinaNortheast Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
Peng, Lei
[1
]
Li, Jingyu
论文数: 0引用数: 0
h-index: 0
机构:
Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R ChinaNortheast Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
Li, Jingyu
[1
]
Mei, Ming
论文数: 0引用数: 0
h-index: 0
机构:
Champlain Coll St Lambert, Dept Math, St Lambert, PQ J4P 3P2, Canada
McGill Univ, Dept Math & Stat, Montreal, PQ H3A 2K6, CanadaNortheast Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
Mei, Ming
[2
,3
]
Zhang, Kaijun
论文数: 0引用数: 0
h-index: 0
机构:
Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R ChinaNortheast Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
Zhang, Kaijun
[1
]
机构:
[1] Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
[2] Champlain Coll St Lambert, Dept Math, St Lambert, PQ J4P 3P2, Canada
In this paper, we study the asymptotic behavior of the solutions to an initial boundary value problem of the Hunter-Saxton equation in the half space when the viscosity tends to zero. By means of the asymptotic analysis with multiple scales, we first formally derive the equations for boundary layer profiles. Next, we study the well-posedness of the equations for the boundary layer profiles by using the compactness argu-ment. Moreover, we construct an accurate approximate solution and use the energy method to obtain the convergence results of the vanishing viscosity limit.(c) 2022 Elsevier Inc. All rights reserved.
机构:
Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R ChinaNortheast Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
Peng, Lei
Li, Jingyu
论文数: 0引用数: 0
h-index: 0
机构:
Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R ChinaNortheast Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
Li, Jingyu
Mei, Ming
论文数: 0引用数: 0
h-index: 0
机构:
Champlain Coll St Lambert, Dept Math, St Lambert, PQ J4P 3P2, Canada
McGill Univ, Dept Math & Stat, Montreal, PQ H3A 2K6, CanadaNortheast Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
Mei, Ming
Zhang, Kaijun
论文数: 0引用数: 0
h-index: 0
机构:
Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R ChinaNortheast Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
机构:
Penn State Univ, Dept Math, University Pk, PA 16802 USAPenn State Univ, Dept Math, University Pk, PA 16802 USA
Bressan, Alberto
Holden, Helge
论文数: 0引用数: 0
h-index: 0
机构:
Norwegian Univ Sci & Technol, Dept Math Sci, NO-7491 Trondheim, Norway
Univ Oslo, Ctr Math Applicat, NO-0316 Oslo, NorwayPenn State Univ, Dept Math, University Pk, PA 16802 USA
Holden, Helge
Raynaud, Xavier
论文数: 0引用数: 0
h-index: 0
机构:
Norwegian Univ Sci & Technol, Dept Math Sci, NO-7491 Trondheim, Norway
Univ Oslo, Ctr Math Applicat, NO-0316 Oslo, NorwayPenn State Univ, Dept Math, University Pk, PA 16802 USA
Raynaud, Xavier
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES,
2010,
94
(01):
: 68
-
92
机构:
Hong Kong Polytech Univ, Dept Appl Math, Hung Hom, Kowloon, Hong Kong, Peoples R ChinaHong Kong Polytech Univ, Dept Appl Math, Hung Hom, Kowloon, Hong Kong, Peoples R China
Gao, Yu
Liu, Hao
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
Shanghai Jiao Tong Univ, Inst Nat Sci, Shanghai 200240, Peoples R ChinaHong Kong Polytech Univ, Dept Appl Math, Hung Hom, Kowloon, Hong Kong, Peoples R China
Liu, Hao
Wong, Tak Kwong
论文数: 0引用数: 0
h-index: 0
机构:
Univ Hong Kong, Dept Math, Pokfulam, Hong Kong, Peoples R ChinaHong Kong Polytech Univ, Dept Appl Math, Hung Hom, Kowloon, Hong Kong, Peoples R China