A NOTE ON CONFORMAL VECTOR FIELDS ON A RIEMANNIAN MANIFOLD

被引:23
作者
Deshmukh, Sharief [1 ]
Al-Solamy, Falleh [2 ]
机构
[1] King Saud Univ, Coll Sci, Dept Math, Riyadh 11451, Saudi Arabia
[2] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
关键词
conformal vector fields; Obata's theorem; phi-analytic conformal vector fields; DIFFERENTIAL-EQUATIONS;
D O I
10.4064/cm136-1-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider an n-dimensional compact Riemannian manifold (M, g) and show that the presence of a non-Killing conformal vector field xi on M that is also an eigenvector of the Laplacian operator acting on smooth vector fields with eigenvalue lambda > 0, together with an upper bound on the energy of the vector field xi, implies that M is isometric to the n-sphere S-n (lambda). We also introduce the notion of phi-analytic conformal vector fields, study their properties, and obtain a characterization of n-spheres using these vector fields.
引用
收藏
页码:65 / 73
页数:9
相关论文
共 14 条
[1]  
Alsolamy, 2008, C MATH, V112, P157, DOI DOI 10.4064/cm112-1-8
[2]  
[Anonymous], 1969, J. Differ. Geom., DOI DOI 10.4310/JDG/1214429058
[3]  
Chavel I., 1984, EIGENVALUES RIEMANNI
[4]   Curvature bounds for the spectrum of a compact Riemannian manifold of constant scalar curvature [J].
Deshmukh, S ;
Al-Eid, A .
JOURNAL OF GEOMETRIC ANALYSIS, 2005, 15 (04) :589-606
[5]   A Note on compact hypersurfaces in a Euclidean space [J].
Deshmukh, Sharief .
COMPTES RENDUS MATHEMATIQUE, 2012, 350 (21-22) :971-974
[6]   Conformal Vector Fields and Eigenvectors of Laplacian Operator [J].
Deshmukh, Sharief .
MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2012, 15 (02) :163-172
[7]   Characterizing specific Riemannian manifolds by differential equations [J].
Erkekoglu, F ;
García-Río, E ;
Kupeli, DN ;
Ünal, B .
ACTA APPLICANDAE MATHEMATICAE, 2003, 76 (02) :195-219
[8]   On a differential equation characterizing Euclidean spheres [J].
García-Río, E ;
Kupeli, DN ;
Ünal, B .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 194 (02) :287-299
[9]   A characterization of complex projective space up to biholomorphic isometry [J].
Robert Molzon ;
Karen Pinney Mortensen .
The Journal of Geometric Analysis, 1997, 7 (4) :611-621
[10]  
OBATA M, 1966, P US JAP SEM DIFF GE, P101