Mechanical, electrical and thermal properties of in-situ exfoliated graphene/epoxy nanocomposites

被引:126
作者
Li, Yan [1 ]
Zhang, Han [1 ,2 ]
Porwal, Harshit [1 ,2 ]
Huang, Zhaohui [3 ]
Bilotti, Emiliano [1 ,2 ]
Peijs, Ton [1 ,2 ]
机构
[1] Queen Mary Univ London, Sch Engn & Mat Sci, Mile End Rd, London E1 4NS, England
[2] Nanoforce Technol Ltd, Mile End Rd, London E1 4NS, England
[3] China Univ Geosci, Sch Mat Sci & Technol, Beijing 100083, Peoples R China
关键词
In-situ exfoliation; Few layer graphene; Graphite nanoplatelets; Epoxy resin; GRAPHITE NANOPLATELET/SILICONE COMPOSITES; CARBON NANOTUBES; ASPECT RATIO; PERCOLATION BEHAVIOR; DYNAMIC PERCOLATION; PHYSICAL-PROPERTIES; POLYMER COMPOSITES; CONDUCTIVITY; QUANTITIES; EFFICIENT;
D O I
10.1016/j.compositesa.2017.01.007
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Depending on processing conditions, in-situ exfoliated graphite nanoplatelets (GNP) with low defect content and average aspect ratios up to 300-1000 and thicknesses of 5-17 nm could be produced by three roll milling (TRM). This paper focuses on the mechanical, electrical and thermal properties of in-situ GNP/epoxy nanocomposites, evaluated in terms of simple analytical models. Good mechanical reinforcement (160% increase in flexural modulus @ 4 wt.% GNP), electrical conductivity (similar to 10(-2)S/m @ 3 wt.% GNP with a percolation threshold of 0.52 vol.%) and thermal conductivity (0.70 W m(-1) K-1 @ 5 wt.% GNP) were obtained. The production of GNP-filled resins using TRM technology can potentially remove important cost barriers for GNP modified plastics, composites and coatings as compared to traditional multi-step solvent based exfoliation methods. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:229 / 236
页数:8
相关论文
共 68 条
  • [61] Processing of expanded graphite reinforced polymer nanocomposites
    Yasmin, Asma
    Luo, Jyi-Jiin
    Daniel, Isaac M.
    [J]. COMPOSITES SCIENCE AND TECHNOLOGY, 2006, 66 (09) : 1182 - 1189
  • [62] Percolation behavior of conductor-insulator composites with varying aspect ratio of conductive fiber
    Yi, JY
    Choi, GM
    [J]. JOURNAL OF ELECTROCERAMICS, 1999, 3 (04) : 361 - 369
  • [63] The mechanics of graphene nanocomposites: A review
    Young, Robert J.
    Kinloch, Ian A.
    Gong, Lei
    Novoselov, Kostya S.
    [J]. COMPOSITES SCIENCE AND TECHNOLOGY, 2012, 72 (12) : 1459 - 1476
  • [64] Carbon hybrid fillers composed of carbon nanotubes directly grown on graphene nanoplatelets for effective thermal conductivity in epoxy composites
    Yu, Lan
    Park, Ji Sun
    Lim, Yun-Soo
    Lee, Churl Seung
    Shin, Kwonwoo
    Moon, Ho Jun
    Yang, Cheol-Min
    Lee, Young Sil
    Han, Jong Hun
    [J]. NANOTECHNOLOGY, 2013, 24 (15)
  • [65] Filtration effects of graphene nanoplatelets in resin infusion processes: Problems and possible solutions
    Zhang, Han
    Liu, Yi
    Huo, Shanshan
    Briscoe, Joe
    Tu, Wei
    Picot, Olivier T.
    Rezai, Amir
    Bilotti, Emiliano
    Peijs, Ton
    [J]. COMPOSITES SCIENCE AND TECHNOLOGY, 2017, 139 : 138 - 145
  • [66] Static and dynamic percolation of phenoxy/carbon nanotube nanocomposites
    Zhang, Han
    Bilotti, Emiliano
    Tu, Wei
    Lew, Chun Yee
    Peijs, Ton
    [J]. EUROPEAN POLYMER JOURNAL, 2015, 68 : 128 - 138
  • [67] Universal resistivity-strain dependence of carbon nanotube/polymer composites
    Zhang, Rui
    Baxendale, Mark
    Peijs, Ton
    [J]. PHYSICAL REVIEW B, 2007, 76 (19)
  • [68] Measurements of mechanical properties and number of layers of graphene from nano-indentation
    Zhang, Yupeng
    Pan, Chunxu
    [J]. DIAMOND AND RELATED MATERIALS, 2012, 24 : 1 - 5