Mechanical, electrical and thermal properties of in-situ exfoliated graphene/epoxy nanocomposites

被引:129
作者
Li, Yan [1 ]
Zhang, Han [1 ,2 ]
Porwal, Harshit [1 ,2 ]
Huang, Zhaohui [3 ]
Bilotti, Emiliano [1 ,2 ]
Peijs, Ton [1 ,2 ]
机构
[1] Queen Mary Univ London, Sch Engn & Mat Sci, Mile End Rd, London E1 4NS, England
[2] Nanoforce Technol Ltd, Mile End Rd, London E1 4NS, England
[3] China Univ Geosci, Sch Mat Sci & Technol, Beijing 100083, Peoples R China
关键词
In-situ exfoliation; Few layer graphene; Graphite nanoplatelets; Epoxy resin; GRAPHITE NANOPLATELET/SILICONE COMPOSITES; CARBON NANOTUBES; ASPECT RATIO; PERCOLATION BEHAVIOR; DYNAMIC PERCOLATION; PHYSICAL-PROPERTIES; POLYMER COMPOSITES; CONDUCTIVITY; QUANTITIES; EFFICIENT;
D O I
10.1016/j.compositesa.2017.01.007
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Depending on processing conditions, in-situ exfoliated graphite nanoplatelets (GNP) with low defect content and average aspect ratios up to 300-1000 and thicknesses of 5-17 nm could be produced by three roll milling (TRM). This paper focuses on the mechanical, electrical and thermal properties of in-situ GNP/epoxy nanocomposites, evaluated in terms of simple analytical models. Good mechanical reinforcement (160% increase in flexural modulus @ 4 wt.% GNP), electrical conductivity (similar to 10(-2)S/m @ 3 wt.% GNP with a percolation threshold of 0.52 vol.%) and thermal conductivity (0.70 W m(-1) K-1 @ 5 wt.% GNP) were obtained. The production of GNP-filled resins using TRM technology can potentially remove important cost barriers for GNP modified plastics, composites and coatings as compared to traditional multi-step solvent based exfoliation methods. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:229 / 236
页数:8
相关论文
共 68 条
[61]   Processing of expanded graphite reinforced polymer nanocomposites [J].
Yasmin, Asma ;
Luo, Jyi-Jiin ;
Daniel, Isaac M. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2006, 66 (09) :1182-1189
[62]   Percolation behavior of conductor-insulator composites with varying aspect ratio of conductive fiber [J].
Yi, JY ;
Choi, GM .
JOURNAL OF ELECTROCERAMICS, 1999, 3 (04) :361-369
[63]   The mechanics of graphene nanocomposites: A review [J].
Young, Robert J. ;
Kinloch, Ian A. ;
Gong, Lei ;
Novoselov, Kostya S. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2012, 72 (12) :1459-1476
[64]   Carbon hybrid fillers composed of carbon nanotubes directly grown on graphene nanoplatelets for effective thermal conductivity in epoxy composites [J].
Yu, Lan ;
Park, Ji Sun ;
Lim, Yun-Soo ;
Lee, Churl Seung ;
Shin, Kwonwoo ;
Moon, Ho Jun ;
Yang, Cheol-Min ;
Lee, Young Sil ;
Han, Jong Hun .
NANOTECHNOLOGY, 2013, 24 (15)
[65]   Filtration effects of graphene nanoplatelets in resin infusion processes: Problems and possible solutions [J].
Zhang, Han ;
Liu, Yi ;
Huo, Shanshan ;
Briscoe, Joe ;
Tu, Wei ;
Picot, Olivier T. ;
Rezai, Amir ;
Bilotti, Emiliano ;
Peijs, Ton .
COMPOSITES SCIENCE AND TECHNOLOGY, 2017, 139 :138-145
[66]   Static and dynamic percolation of phenoxy/carbon nanotube nanocomposites [J].
Zhang, Han ;
Bilotti, Emiliano ;
Tu, Wei ;
Lew, Chun Yee ;
Peijs, Ton .
EUROPEAN POLYMER JOURNAL, 2015, 68 :128-138
[67]   Universal resistivity-strain dependence of carbon nanotube/polymer composites [J].
Zhang, Rui ;
Baxendale, Mark ;
Peijs, Ton .
PHYSICAL REVIEW B, 2007, 76 (19)
[68]   Measurements of mechanical properties and number of layers of graphene from nano-indentation [J].
Zhang, Yupeng ;
Pan, Chunxu .
DIAMOND AND RELATED MATERIALS, 2012, 24 :1-5