A note on the convergence of product integration and Galerkin method for weakly singular integral equations

被引:7
作者
Baratella, P [1 ]
机构
[1] POLITECN TORINO, DIPARTIMENTO MATEMAT, I-10129 TURIN, ITALY
关键词
weak singularities; Galerkin method; product integration; graded mesh;
D O I
10.1016/S0377-0427(97)00108-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider weakly singular integral equations of Fledholm-type whose kernels satisfy certain algebraic estimates with their derivatives. In particular, we establish optimal convergence order estimates for product integration and Galerkin method applied on suitable grading mesh for the solution of such equations. Some superconvergence results are also derived.
引用
收藏
页码:11 / 18
页数:8
相关论文
共 14 条
[1]  
Anselone P. M., 1971, Collectively compact operator approximation theory and applications to integral equations
[2]  
Chandler G., 1979, THESIS AUSTR NATL U
[3]  
DE HOOG F, 1973, MATH COMPUT, V27, P295, DOI 10.1090/S0025-5718-1973-0329207-0
[4]  
de Vore R. A., 1980, QUANTITATIVE APPROXI, P153
[5]  
GRAHAM IG, 1982, MATH COMPUT, V39, P519, DOI 10.1090/S0025-5718-1982-0669644-3
[6]   PRODUCT INTEGRATION FOR THE LINEAR TRANSPORT-EQUATION IN SLAB GEOMETRY [J].
MONEGATO, G ;
COLOMBO, V .
NUMERISCHE MATHEMATIK, 1988, 52 (02) :219-240
[7]  
RICE JR, 1969, APPROXIMATION SPECIA, P349
[8]  
SCHNEIDER C, 1981, MATH COMPUT, V36, P207, DOI 10.1090/S0025-5718-1981-0595053-0
[9]  
SCHNEIDER C, 1988, Z ANGEW MATH MECH, V12, P643
[10]  
SCHNEIDER C., 1979, Integr. Equat. Oper. Th., V2, P62