Simulating two-dimensional thermal channel flows by means of a lattice Boltzmann method with new boundary conditions

被引:92
作者
D'Orazio, A
Succi, S
机构
[1] Univ Roma La Sapienza, Dipartimento Meccan & Aeronaut, I-00184 Rome, Italy
[2] CNR, Ist Applicaz Calcolo Mauro Picone, I-00161 Rome, Italy
来源
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE | 2004年 / 20卷 / 06期
关键词
lattice Boltzmann thermal model; doubled-populations BGK; boundary conditions; viscous heating; channel flows; heat transfer;
D O I
10.1016/j.future.2003.12.005
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Thermal boundary conditions for a doubled-populations BGK model are introduced and numerically demonstrated. The unknown thermal distribution functions at the boundary are assumed to be equilibrium distribution functions, with a counter-slip internal energy density which is determined consistently with Dirichlet and/or Neumann boundary constraints. The hydrodynamic boundary conditions are adapted to situations of engineering interest, and viscous heating effects are taken in account. The method is used to simulate channel flows; numerical results and theoretical solutions are found in satisfactory agreement for both hydrodynamic and thermal fields. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:935 / 944
页数:10
相关论文
共 20 条
[1]   LATTICE BOLTZMANN THERMOHYDRODYNAMICS [J].
ALEXANDER, FJ ;
CHEN, S ;
STERLING, JD .
PHYSICAL REVIEW E, 1993, 47 (04) :R2249-R2252
[2]   THE LATTICE BOLTZMANN-EQUATION - THEORY AND APPLICATIONS [J].
BENZI, R ;
SUCCI, S ;
VERGASSOLA, M .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1992, 222 (03) :145-197
[3]   H-THEOREM AND GENERALIZED SEMI-DETAILED BALANCE CONDITION FOR LATTICE-GAS SYSTEMS [J].
CHEN, HD .
JOURNAL OF STATISTICAL PHYSICS, 1995, 81 (1-2) :347-359
[4]   PRANDTL NUMBER OF LATTICE BHATNAGAR-GROSS-KROOK FLUID [J].
CHEN, Y ;
OHASHI, H ;
AKIYAMA, M .
PHYSICS OF FLUIDS, 1995, 7 (09) :2280-2282
[5]   THERMAL LATTICE BHATNAGAR-GROSS-KROOK MODEL WITHOUT NONLINEAR DEVIATIONS IN MACRODYNAMIC EQUATIONS [J].
CHEN, Y ;
OHASHI, H ;
AKIYAMA, M .
PHYSICAL REVIEW E, 1994, 50 (04) :2776-2783
[6]   Lattice Boltzmann simulation of open flows with heat transfer [J].
D'Orazio, A ;
Succi, S ;
Arrighetti, C .
PHYSICS OF FLUIDS, 2003, 15 (09) :2778-2781
[7]   A novel thermal model for the lattice Boltzmann method in incompressible limit [J].
He, X ;
Chen, S ;
Doolen, GD .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 146 (01) :282-300
[8]   LATTICE GAS-DYNAMICS WITH ENHANCED COLLISIONS [J].
HIGUERA, FJ ;
SUCCI, S ;
BENZI, R .
EUROPHYSICS LETTERS, 1989, 9 (04) :345-349
[9]   NON-SLIP BOUNDARY-CONDITION FOR LATTICE BOLTZMANN SIMULATIONS [J].
INAMURO, T ;
YOSHINO, M ;
OGINO, F .
PHYSICS OF FLUIDS, 1995, 7 (12) :2928-2930
[10]   Perfect entropy functions of the Lattice Boltzmann method [J].
Karlin, IV ;
Ferrante, A ;
Öttinger, HC .
EUROPHYSICS LETTERS, 1999, 47 (02) :182-188