Electronic transport in silicon nanocrystals and nanochains

被引:22
作者
Durrani, Z. A. K. [1 ,2 ]
Rafiq, M. A. [3 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Elect & Elect Engn, London SW7 2AZ, England
[2] Japan Sci & Technol Agcy, SORST Programme, Chiyoda Ku, Tokyo 1028666, Japan
[3] Tokyo Inst Technol, Quantum Nanoelect Res Ctr, Meguro Ku, Tokyo 1528552, Japan
关键词
Silicon nanocrystals; Silicon nanochains; Silicon nanowires; Single-electron effects; Hopping electron transport; Space charge limited transport; VISIBLE-LIGHT EMISSION; CRYSTALLIZED POLYCRYSTALLINE SILICON; CHEMICAL-VAPOR-DEPOSITION; QUANTUM-DOT TRANSISTOR; THIN-FILM TRANSISTORS; IMPLANTED SIO2 LAYERS; ROOM-TEMPERATURE; DISORDERED-SYSTEMS; COULOMB-BLOCKADE; ELECTRICAL CHARACTERISTICS;
D O I
10.1016/j.mee.2009.03.123
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Si nanocrystals and nanochains, prepared by material synthesis, provide a means to define nanoscale devices using growth rather than lithographic techniques. Electronic transport in thin films of Si nanocrystals is influenced strongly by single-electron charging and quantum-confinement effects, and by the grain boundary regions between nanocrystals. This paper reviews electronic transport mechanisms in Si nanocrystal materials. These include thermionic emission of electrons across grain boundaries, space charge limited current, hopping transport, and single-electron charging effects. The fabrication of single-electron devices in Si nanocrystal thin films and nanochains is considered, particularly with regards to their operation at room temperature. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:456 / 466
页数:11
相关论文
共 104 条
[1]   Tunnel barrier formation in silicon nanowires [J].
Altebaeumer, T ;
Ahmed, H .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2003, 42 (2A) :414-417
[2]   CHARGE SOLITONS IN 1-D ARRAY OF MESOSCOPIC TUNNEL-JUNCTIONS [J].
AMMAN, M ;
BENJACOB, E ;
MULLEN, K .
PHYSICS LETTERS A, 1989, 142 (6-7) :431-437
[3]   Tuning the emission wavelength of Si nanocrystals in SiO2 by oxidation [J].
Brongersma, ML ;
Polman, A ;
Min, KS ;
Boer, E ;
Tambo, T ;
Atwater, HA .
APPLIED PHYSICS LETTERS, 1998, 72 (20) :2577-2579
[4]   Size-dependent electron-hole exchange interaction in Si nanocrystals [J].
Brongersma, ML ;
Kik, PG ;
Polman, A ;
Min, KS ;
Atwater, HA .
APPLIED PHYSICS LETTERS, 2000, 76 (03) :351-353
[5]   POLYCRYSTALLINE SILICON THIN-FILM TRANSISTORS [J].
BROTHERTON, SD .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1995, 10 (06) :721-738
[6]   Carrier transport in thin films of silicon nanoparticles [J].
Burr, TA ;
Seraphin, AA ;
Werwa, E ;
Kolenbrander, KD .
PHYSICAL REVIEW B, 1997, 56 (08) :4818-4824
[7]   Visible electroluminescence from silicon nanocrystals embedded in amorphous silicon nitride matrix [J].
Chen, LY ;
Chen, WH ;
Hong, FCN .
APPLIED PHYSICS LETTERS, 2005, 86 (19) :1-3
[8]   ZnO/PMMA thin film nanocomposites for optical coatings [J].
Chen, Q ;
Schadler, LS ;
Siegel, RW ;
Irvin, GC .
NANOCRYSTALS AND ORGANIC AND HYBRID NANOMATERIALS, 2003, 5222 :158-162
[9]   Fabrication and room-temperature characterization of a silicon self-assembled quantum-dot transistor [J].
Choi, BH ;
Hwang, SW ;
Kim, IG ;
Shin, HC ;
Kim, Y ;
Kim, EK .
APPLIED PHYSICS LETTERS, 1998, 73 (21) :3129-3131
[10]   CHEMICAL VAPOR DEPOSITED POLYCRYSTALLINE SILICON. [J].
Cowher, M.E. ;
Sedgwick, T.O. .
1600, (119)