Use of Legendre polynomials and Wilmink function in genetic evaluations for persistency of lactation in Holstein cows

被引:15
作者
Cobuci, J. A.
Costa, C. N.
Teixeira, N. M.
Freitas, A. F.
机构
[1] Univ Fed Rio Grande do Sul, BR-91540000 Porto Alegre, RS, Brazil
[2] Embrapa Gado Leite, Juiz De Fora, MG, Brazil
关键词
random regression model; genetic parameters; test day; Holstein cows; breeding value;
D O I
10.1590/S0102-09352006000400025
中图分类号
S85 [动物医学(兽医学)];
学科分类号
0906 ;
摘要
Records of 11,023 first-parity Holstein cows belonging to 251 herds in the State of Minas Gerais were used to compare the Legendre polynomials and Wilmink function in random regression models (RRM) as for their effects in the estimate of genetic parameters and prediction of breeding values for nine types of persistency measurements and 305-day milk yield. The random regression test day models included the effect of herd-year-month test day, parameters of the function of Wilmink or 3(th) to 5(th) order Legendre polynomials to model fixed curves of the subclasses and 3(th) to 5(th) order Legendre polynomials to model genetic and permanent environmental effects. The Akaike's Information Criterion (AIC) and Bayesian Information Criterion (BIC) indicated the model with larger number of parameters as the one that best fitted the data of milk yield. Using the Legrendre polynomial model large variation was observed in the estimates heritabilities for most of the persistency measures. The estimates herdabilities varied from 0.11 to 0.33 to milk yield throughout the lactation, from 0.33 to 0.36 for the 305-day milk yield and, from 0.00 to 0.32 for persistency. Genetic correlations between persistency and 305-day milk yield differed according to the model and persistency measure. Compared the Legendre polynomials to the Wilmink function provided expressive changes in rank of animals for persistency of lactation.
引用
收藏
页码:614 / 623
页数:10
相关论文
共 18 条
[1]   Genetic modelling of daily milk yield using orthogonal polynomials and parametric curves [J].
Brotherstone, S ;
White, IMS ;
Meyer, K .
ANIMAL SCIENCE, 2000, 70 :407-415
[2]  
Cobuci J. A., 2003, Archivos Latinoamericanos de Produccion Animal, V11, P163
[3]   Estimation of genetic parameters for test-day milk yield in Holstein cows using a random regression model [J].
Cobuci, JA ;
Euclydes, RF ;
Lopes, PS ;
Costa, CN ;
Torres, RD ;
Pereira, CS .
GENETICS AND MOLECULAR BIOLOGY, 2005, 28 (01) :75-83
[4]   Analysis of persistency in the lactation of Holstein cows using test-day yield and random regression model [J].
Cobuci, JA ;
Euclydes, RF ;
Costa, CN ;
Lopes, PS ;
Torres, RD ;
Pereira, CS .
REVISTA BRASILEIRA DE ZOOTECNIA-BRAZILIAN JOURNAL OF ANIMAL SCIENCE, 2004, 33 (03) :546-554
[5]  
COSTA CN, 2003, WORLD C AN PROD 2003, V9, P77
[6]  
DEROOS APW, 2001, INTERBULL B, V127, P155
[7]   Random regression test-day models for milk yield records, with different structure of residual variances [J].
El Faro, L ;
De Albuquerque, LG .
REVISTA BRASILEIRA DE ZOOTECNIA-BRAZILIAN JOURNAL OF ANIMAL SCIENCE, 2003, 32 (05) :1104-1113
[8]   Genetic and environmental relationship among calving interval, survival, persistency of milk yield and somatic cell count in dairy cattle [J].
Haile-Mariam, M ;
Bowman, PJ ;
Goddard, ME .
LIVESTOCK PRODUCTION SCIENCE, 2003, 80 (03) :189-200
[9]   Genetic parameters for milk production and persistency for Danish Holsteins estimated in random regression models using REML [J].
Jakobsen, JH ;
Madsen, P ;
Jensen, J ;
Pedersen, J ;
Christensen, LG ;
Sorensen, DA .
JOURNAL OF DAIRY SCIENCE, 2002, 85 (06) :1607-1616
[10]   Genetic evaluation of dairy cattle using test day yields and random regression model [J].
Jamrozik, J ;
Schaeffer, LR ;
Dekkers, JCM .
JOURNAL OF DAIRY SCIENCE, 1997, 80 (06) :1217-1226