A 2.5D Deep Learning-Based Approach for Prostate Cancer Detection on T2-Weighted Magnetic Resonance Imaging

被引:11
作者
Alkadi, Ruba [1 ]
El-Baz, Ayman [2 ]
Taher, Fatma [1 ]
Werghi, Naoufel [1 ]
机构
[1] Khalifa Univ Sci & Technol, Abu Dhabi, U Arab Emirates
[2] Univ Louisville, Dept Bioengn, Louisville, KY 40292 USA
来源
COMPUTER VISION - ECCV 2018 WORKSHOPS, PT IV | 2019年 / 11132卷
关键词
D O I
10.1007/978-3-030-11018-5_66
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a fully automatic magnetic resonance image (MRI)-based computer aided diagnosis (CAD) system which simultaneously performs both prostate segmentation and prostate cancer diagnosis. The system utilizes a deep-learning approach to extract high-level features from raw T2-weighted MR volumes. Features are then remapped to the original input to assign a predicted label to each pixel. In the same context, we propose a 2.5D approach which exploits 3D spatial information without a compromise in computational cost. The system is evaluated on a public dataset. Preliminary results demonstrate that our approach outperforms current state-of-the-art in both prostate segmentation and cancer diagnosis.
引用
收藏
页码:734 / 739
页数:6
相关论文
共 9 条
[1]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[2]  
Kiraly Atilla P., 2017, Medical Image Computing and Computer Assisted Intervention MICCAI 2017. 20th International Conference. Proceedings: LNCS 10435, P489, DOI 10.1007/978-3-319-66179-7_56
[3]   ImageNet Classification with Deep Convolutional Neural Networks [J].
Krizhevsky, Alex ;
Sutskever, Ilya ;
Hinton, Geoffrey E. .
COMMUNICATIONS OF THE ACM, 2017, 60 (06) :84-90
[4]  
Lemaître G, 2017, IEEE ENG MED BIO, P3138, DOI 10.1109/EMBC.2017.8037522
[5]   Computer-Aided Detection and diagnosis for prostate cancer based on mono and multi-parametric MRI: A review [J].
Lemaitre, Guillaume ;
Marti, Robert ;
Freixenet, Jordi ;
Vilanova, Joan C. ;
Walker, Paul M. ;
Meriaudeau, Fabrice .
COMPUTERS IN BIOLOGY AND MEDICINE, 2015, 60 :8-31
[6]   A survey on deep learning in medical image analysis [J].
Litjens, Geert ;
Kooi, Thijs ;
Bejnordi, Babak Ehteshami ;
Setio, Arnaud Arindra Adiyoso ;
Ciompi, Francesco ;
Ghafoorian, Mohsen ;
van der Laak, Jeroen A. W. M. ;
van Ginneken, Bram ;
Sanchez, Clara I. .
MEDICAL IMAGE ANALYSIS, 2017, 42 :60-88
[7]   Computer-Aided Detection of Prostate Cancer inMRI [J].
Litjens, Geert ;
Debats, Oscar ;
Barentsz, Jelle ;
Karssemeijer, Nico ;
Huisman, Henkjan .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2014, 33 (05) :1083-1092
[8]  
Roth HR, 2014, LECT NOTES COMPUT SC, V8673, P520, DOI 10.1007/978-3-319-10404-1_65
[9]   Automatic classification and localization of prostate cancer using multi-parametric MRI/MRS [J].
Trigui, R. ;
Miteran, J. ;
Walker, P. M. ;
Sellami, L. ;
Ben Hamida, A. .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2017, 31 :189-198