Non-randomized control of constrained Markov decision processes

被引:0
作者
Chen, Richard C. [1 ]
Feinberg, Eugene A. [2 ]
机构
[1] USN, Res Lab, Div Radar, Code 5340, Washington, DC 20375 USA
[2] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA
来源
2006 AMERICAN CONTROL CONFERENCE, VOLS 1-12 | 2006年 / 1-12卷
关键词
D O I
10.1109/ACC.2006.1656446
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents results concerning the optimal control of constrained Markov decision processes with expected-cost criteria using non-randomized policies. A dynamic programming approach is used to construct optimal policies. The convergence of the finite horizon value function to the infinite horizon value function is also shown. A simple example application is presented.
引用
收藏
页码:1593 / +
页数:3
相关论文
共 14 条
[1]  
Altman E., 1991, Annals of Operations Research, V32, P1, DOI 10.1007/BF02204825
[2]  
[Anonymous], 2002, HDB MARKOV DECISION
[3]   Constrained stochastic control with probabilistic criteria and search optimization [J].
Chen, RC .
2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5, 2004, :3013-3020
[4]  
Chen RC, 2002, P AMER CONTR CONF, V1-6, P2014, DOI 10.1109/ACC.2002.1023931
[5]   Dynamic programming equations for discounted constrained stochastic control [J].
Chen, RC ;
Blankenship, GL .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2004, 49 (05) :699-709
[6]  
CHEN RC, 2005, DEF APPL SIGN PROC P
[7]   Mixed risk-neutral/minimax control of discrete-time, finite-state Markov decision processes [J].
Coraluppi, SP ;
Marcus, SI .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (03) :528-532
[8]   CONSTRAINED MARKOV DECISION-MODELS WITH WEIGHTED DISCOUNTED REWARDS [J].
FEINBERG, EA ;
SHWARTZ, A .
MATHEMATICS OF OPERATIONS RESEARCH, 1995, 20 (02) :302-320
[9]   Constrained dynamic programming with two discount factors: Applications and an algorithm [J].
Feinberg, EA ;
Shwartz, A .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (03) :628-631
[10]   Constrained discounted Markov decision processes and Hamiltonian Cycles [J].
Feinberg, EA .
MATHEMATICS OF OPERATIONS RESEARCH, 2000, 25 (01) :130-140