Comprehensive sequence and expression profile analysis of Hsp20 gene family in rice

被引:105
作者
Ouyang, Yidan [1 ]
Chen, Jiongjiong [1 ]
Xie, Weibo [1 ]
Wang, Lei [1 ]
Zhang, Qifa [1 ]
机构
[1] Huazhong Agr Univ, Natl Ctr Plant Gene Res, Natl Key Lab Crop Genet Improvement, Wuhan 430070, Peoples R China
基金
中国国家自然科学基金;
关键词
Oryza sativa; Heat shock; Expression profiles; Microarray; Hsp20 gene family; HEAT-SHOCK PROTEINS; STRESS TRANSCRIPTION FACTORS; ALPHA-CRYSTALLIN; ARABIDOPSIS-THALIANA; SOYBEAN SEEDLINGS; ESCHERICHIA-COLI; ACCUMULATION; TOLERANCE; IDENTIFICATION; GENOME;
D O I
10.1007/s11103-009-9477-y
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Hsp20 genes represent the most abundant small heat shock proteins (sHSPs) in plants. Hsp20 gene family has been shown to be involved in preventing heat shock and promoting resistance to environmental stress factors, but very little is known about this gene family in rice. Here, we report the identification and characterization of 39 OsHsp20 genes in rice, describing the gene structure, gene expression, genome localization, and phylogenetic relationship of each member. We have used RT-PCR to perform a characterization of the normal and heat shock-induced expression of selective OsHsp20 genes. A genome-wide microarray based gene expression analysis involving 25 stages of vegetative and reproductive development in three rice cultivars has revealed that 36 OsHsp20 genes were expressed in at least one of the experimental stages studied. Among these, transcripts of OsHsp20 were accumulated differentially during vegetative and reproductive developmental stages and preferentially down-regulated in Shanyou 63. In addition, OsHsp20 genes were identified as showing prominent heterosis in family-level expression. Our results suggest that the expression patterns of the OsHsp20 genes are diversified not only in developmental stages but also in variety level.
引用
收藏
页码:341 / 357
页数:17
相关论文
共 74 条
[1]   Accumulation of small heat shock proteins, including mitochondrial HSP22, induced by oxidative stress and adaptive response in tomato cells [J].
Banzet, N ;
Richaud, C ;
Deveaux, Y ;
Kazmaier, M ;
Gagnon, J ;
Triantaphylidès, C .
PLANT JOURNAL, 1998, 13 (04) :519-527
[2]   MECHANISMS OF HEAT-SHOCK GENE ACTIVATION IN HIGHER EUKARYOTES [J].
BIENZ, M ;
PELHAM, HRB .
ADVANCES IN GENETICS INCORPORATING MOLECULAR GENETIC MEDICINE, 1987, 24 :31-72
[3]   Variations of the C2H2 zinc finger motif in the yeast genome and classification of yeast zinc finger proteins [J].
Bohm, S ;
Frishman, D ;
Mewes, HW .
NUCLEIC ACIDS RESEARCH, 1997, 25 (12) :2464-2469
[4]   The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana [J].
Cannon S.B. ;
Mitra A. ;
Baumgarten A. ;
Young N.D. ;
May G. .
BMC Plant Biology, 4 (1)
[5]   THE EXPANDING SMALL HEAT-SHOCK PROTEIN FAMILY, AND STRUCTURE PREDICTIONS OF THE CONSERVED ALPHA-CRYSTALLIN DOMAIN [J].
CASPERS, GJ ;
LEUNISSEN, JAM ;
DEJONG, WW .
JOURNAL OF MOLECULAR EVOLUTION, 1995, 40 (03) :238-248
[6]  
Chen Xiao-Jun, 2006, Yichuan, V28, P1411, DOI 10.1360/yc-006-1411
[7]   Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis [J].
Cheong, YH ;
Chang, HS ;
Gupta, R ;
Wang, X ;
Zhu, T ;
Luan, S .
PLANT PHYSIOLOGY, 2002, 129 (02) :661-677
[8]   EXPRESSION OF SUNFLOWER LOW-MOLECULAR-WEIGHT HEAT-SHOCK PROTEINS DURING EMBRYOGENESIS AND PERSISTENCE AFTER GERMINATION - LOCALIZATION AND POSSIBLE FUNCTIONAL IMPLICATIONS [J].
COCA, MA ;
ALMOGUERA, C ;
JORDANO, J .
PLANT MOLECULAR BIOLOGY, 1994, 25 (03) :479-492
[9]   Silence of the centromeres - not [J].
Cooke, HJ .
TRENDS IN BIOTECHNOLOGY, 2004, 22 (07) :319-321
[10]   Genealogy of the α-crystallin -: small heat-shock protein superfamily [J].
de Jong, WW ;
Caspers, GJ ;
Leunissen, JAM .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 1998, 22 (3-4) :151-162