Number of predictors and multicollinearity: What are their effects on error and bias in regression?

被引:129
作者
Lavery, Matthew Ryan [1 ]
Acharya, Parul [2 ]
Sivo, Stephen A. [3 ]
Xu, Lihua [3 ]
机构
[1] Bowling Green State Univ, Coll Educ & Human Dev, Educ Fdn, Leadership & Policy, 550 Educ, Bowling Green, OH 43403 USA
[2] Columbus State Univ, Coll Educ & Hlth Profess, Columbus, GA USA
[3] Univ Cent Florida, Coll Educ & Human Performance, Dept Educ & Human Sci, Orlando, FL 32816 USA
关键词
Monte Carlo simulation study; Multiple regression; Multicollinearity; Statistical methods; COLLINEARITY; POWER;
D O I
10.1080/03610918.2017.1371750
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The present Monte Carlo simulation study adds to the literature by analyzing parameter bias, rates of Type I and Type II error, and variance inflation factor (VIF) values produced under various multicollinearity conditions by multiple regressions with two, four, and six predictors. Findings indicate multicollinearity is unrelated to Type I error, but increases Type II error. Investigation of bias suggests that multicollinearity increases the variability in parameter bias, while leading to overall underestimation of parameters. Collinearity also increases VIF. In the case of all diagnostics however, increasing the number of predictors interacts with multicollinearity to compound observed problems.
引用
收藏
页码:27 / 38
页数:12
相关论文
共 27 条
[1]  
[Anonymous], 1990, Linear statistical models: an applied approach
[2]   Criticality of predictors in multiple regression [J].
Azen, R ;
Budescu, DV ;
Reiser, B .
BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2001, 54 :201-225
[3]   Statistics in brief:: The importance of sample size in the planning and interpretation of medical research [J].
Biau, David Jean ;
Kerneis, Solen ;
Porcher, Raphael .
CLINICAL ORTHOPAEDICS AND RELATED RESEARCH, 2008, 466 (09) :2282-2288
[4]  
Blaze T.J., 2012, AM ED RES ASS C VANC
[5]  
Chaterjee S., 2006, Regression analysis by example, V4th
[6]   A POWER PRIMER [J].
COHEN, J .
PSYCHOLOGICAL BULLETIN, 1992, 112 (01) :155-159
[7]  
Craney T. A., 2002, Quality Engineering, V14, P391, DOI 10.1081/QEN-120001878
[8]   Collinearity: a review of methods to deal with it and a simulation study evaluating their performance [J].
Dormann, Carsten F. ;
Elith, Jane ;
Bacher, Sven ;
Buchmann, Carsten ;
Carl, Gudrun ;
Carre, Gabriel ;
Garcia Marquez, Jaime R. ;
Gruber, Bernd ;
Lafourcade, Bruno ;
Leitao, Pedro J. ;
Muenkemueller, Tamara ;
McClean, Colin ;
Osborne, Patrick E. ;
Reineking, Bjoern ;
Schroeder, Boris ;
Skidmore, Andrew K. ;
Zurell, Damaris ;
Lautenbach, Sven .
ECOGRAPHY, 2013, 36 (01) :27-46
[9]  
Fan X., 2002, SAS MONTE CARLO STUD
[10]   Nonlinearity, multicollinearity and the probability of type II error in detecting interaction [J].
Ganzach, Y .
JOURNAL OF MANAGEMENT, 1998, 24 (05) :615-622