Ni-WC/C nanocluster catalysts for urea electrooxidation

被引:121
作者
Wang, Lu [1 ]
Li, Mingtao [1 ]
Huang, Zhiyu [1 ]
Li, Yingming [1 ]
Qi, Suitao [1 ]
Yi, Chunhai [1 ]
Yang, Bolun [1 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Dept Chem Engn, Xian 710049, Peoples R China
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
Nanostructure electrocatalysts; Tungsten carbide; Synergistic effect; Electrooxidation of urea; TUNGSTEN CARBIDE MICROSPHERES; FUEL-CELL; ELECTROCATALYTIC ACTIVITY; HYDROGEN-PRODUCTION; NICKEL; METAL; OXIDATION; CARBON; PERFORMANCE; REDUCTION;
D O I
10.1016/j.jpowsour.2014.04.104
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A nanocluster Ni-WC/C electrocatalyst is prepared through a sequential impregnation method and is used for the urea electrooxidation in alkaline conditions. The micro-morphology, lattice parameter, composition and surface states of Ni-WC/C particles are determined by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX) and X-ray photoelectron spectrometry (XPS) analysis. The electrooxidation activity and stability of the Ni-WC/C catalyst are also investigated by cyclic voltammograms and chronoamperograms. Characterization results indicate that the Ni nanoclusters are uniformly distributed on the WC/C framework, and the Ni-WC/C catalyst shows high electrocatalytic activity and stability for urea electrooxidation. The maximum current density at the Ni-WC/C electrode is almost 700 mA cm(-2) mg(-1) which is one order of magnitude higher than that at the Ni/C electrode, and the steady current density at the Ni-WC/C electrode is also markedly improved. Furthermore, the ESA values and XPS spectra indicate that the enhanced performance of the Ni-WC/C catalyst could be attributed to the structure effect and electron effect between nickel and tungsten carbide. 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:282 / 289
页数:8
相关论文
共 40 条
[1]   ELECTRONIC AND CATALYTIC PROPERTIES OF TUNGSTEN CARBIDE [J].
BENNETT, LH ;
CUTHILL, JR ;
MCALISTER, AJ ;
ERICKSON, NE .
SCIENCE, 1975, 187 (4179) :858-859
[2]   ELECTRONIC-STRUCTURE AND CATALYTIC BEHAVIOR OF TUNGSTEN CARBIDE [J].
BENNETT, LH ;
CUTHILL, JR ;
MCALISTER, AJ ;
ERICKSON, NE ;
WATSON, RE .
SCIENCE, 1974, 184 (4136) :563-565
[3]   Urea electrolysis: direct hydrogen production from urine [J].
Boggs, Bryan K. ;
King, Rebecca L. ;
Botte, Gerardine G. .
CHEMICAL COMMUNICATIONS, 2009, (32) :4859-4861
[4]   Metal-nanocluster-filled carbon nanotubes: Catalytic properties and possible applications in electrochemical energy storage and production [J].
Che, GL ;
Lakshmi, BB ;
Martin, CR ;
Fisher, ER .
LANGMUIR, 1999, 15 (03) :750-758
[5]   Dissociation Rates of Urea in the Presence of NiOOH Catalyst: A DFT Analysis [J].
Daramola, Damilola A. ;
Singh, Deepika ;
Botte, Gerardine G. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2010, 114 (43) :11513-11521
[6]   A New Class of Electrocatalysts for Hydrogen Production from Water Electrolysis: Metal Monolayers Supported on Low-Cost Transition Metal Carbides [J].
Esposito, Daniel V. ;
Hunt, Sean T. ;
Kimmel, Yannick C. ;
Chen, Jingguang G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (06) :3025-3033
[7]   Synthesis of Dendritic Nano-Sized Nickel for use as Anode Material in an Alkaline Membrane Fuel Cell [J].
Ewing, S. J. ;
Lan, R. ;
Xu, X. X. ;
Tao, S. W. .
FUEL CELLS, 2010, 10 (01) :72-76
[8]   Tungsten carbide microspheres as a noble-metal-economic electrocatalyst for methanol oxidation [J].
Ganesan, R ;
Lee, JS .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (40) :6557-6560
[9]   Platinized mesoporous tungsten carbide for electrochemical methanol oxidation [J].
Ganesan, Raman ;
Ham, Dong Jin ;
Lee, Jae Sung .
ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (10) :2576-2579
[10]   Pt/WC as an anode catalyst for PEMFC: Activity and CO tolerance [J].
Ham, Dong Jin ;
Kim, Young Kwon ;
Han, Seung Hyun ;
Lee, Jae Sung .
CATALYSIS TODAY, 2008, 132 (1-4) :117-122