THE BLOW-UP CRITERION FOR THE COMPRESSIBLE NAVIER-STOKES SYSTEM WITH A YUKAWA-POTENTIAL IN THE CRITICAL BESOV SPACE

被引:0
作者
Chikami, Noboru [1 ]
机构
[1] Tohoku Univ, Math Inst, Sendai, Miyagi 9808578, Japan
关键词
WELL-POSEDNESS; EQUATIONS; REGULARITY;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a refined blow-up criterion for the solution for the compressible Navier-Stokes system with a Yukawa-potential in the critical Besov space [13]. The result may be considered as a compressible counterpart of the results for. the incompressible Navier-Stokes system.
引用
收藏
页码:801 / 820
页数:20
相关论文
共 50 条
  • [31] Lower Bounds on the Blow-Up Rate of the Axisymmetric Navier-Stokes Equations II
    Chen, Chiun-Chuan
    Strain, Robert M.
    Tsai, Tai-Peng
    Yau, Horng-Tzer
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2009, 34 (03) : 203 - 232
  • [32] Time global existence and finite time blow-up criterion for solutions to the Keller-Segel system coupled with the Navier-Stokes fluid
    Kozono, Hideo
    Miura, Masanari
    Sugiyama, Yoshie
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (09) : 5410 - 5492
  • [33] A Note on Blow-up Criterion of Strong Solutions for the 3D Inhomogeneous Incompressible Navier-Stokes Equations with Vacuum
    Ye, Zhuan
    Xu, Xiaojing
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2015, 18 (01)
  • [34] A blow-up criterion for the full compressible Euler-Maxwell system
    Fan, Jishan
    Li, Fucai
    Nakamura, Gen
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 139 : 152 - 157
  • [35] GLOBAL STRONG SOLUTIONS TO THE COMPRESSIBLE NAVIER-STOKES SYSTEM WITH POTENTIAL TEMPERATURE TRANSPORT
    Zhai, Xiaoping
    Li, Yongsheng
    Zhou, Fujun
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2023, 21 (08) : 2247 - 2260
  • [36] A Kato-Type Criterion for the Inviscid Limit of the Compressible Navier-Stokes System
    Zou, Yonghui
    Xu, Xin
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2023, 25 (03)
  • [37] Optimal decay estimate of mild solutions to the compressible Navier-Stokes-Korteweg system in the critical Besov space
    Wang, Yu-Zhu
    Wang, Yinxia
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (18) : 9592 - 9606
  • [38] Serrin-Type Blowup Criterion for Full Compressible Navier-Stokes System
    Huang, Xiangdi
    Li, Jing
    Wang, Yong
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2013, 207 (01) : 303 - 316
  • [39] Critical regularity issues for the compressible Navier-Stokes system in bounded domains
    Danchin, Raphael
    Tolksdorf, Patrick
    MATHEMATISCHE ANNALEN, 2023, 387 (3-4) : 1903 - 1959
  • [40] Local well-posedness and blow-up criterion for a compressible Navier-Stokes-P1 approximate model arising in radiation hydrodynamics
    He, Fangyi
    Fan, Jishan
    Zhou, Yong
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2018, 98 (09): : 1632 - 1641