THE BLOW-UP CRITERION FOR THE COMPRESSIBLE NAVIER-STOKES SYSTEM WITH A YUKAWA-POTENTIAL IN THE CRITICAL BESOV SPACE

被引:0
作者
Chikami, Noboru [1 ]
机构
[1] Tohoku Univ, Math Inst, Sendai, Miyagi 9808578, Japan
关键词
WELL-POSEDNESS; EQUATIONS; REGULARITY;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a refined blow-up criterion for the solution for the compressible Navier-Stokes system with a Yukawa-potential in the critical Besov space [13]. The result may be considered as a compressible counterpart of the results for. the incompressible Navier-Stokes system.
引用
收藏
页码:801 / 820
页数:20
相关论文
共 26 条
[1]   Global existence for an nonhomogeneous fluid [J].
Abidi, Hammadi ;
Paicu, Marius .
ANNALES DE L INSTITUT FOURIER, 2007, 57 (03) :883-917
[2]  
[Anonymous], 2010, Theory of Function Spaces
[3]  
Bahouri Hajer, 2011, FOURIER ANAL NONLINE, V343
[4]   REMARKS ON THE BREAKDOWN OF SMOOTH SOLUTIONS FOR THE 3-D EULER EQUATIONS [J].
BEALE, JT ;
KATO, T ;
MAJDA, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (01) :61-66
[5]  
BONY JM, 1981, ANN SCI ECOLE NORM S, V14, P209
[6]   FLOW OF NON-LIPSCHITZ VECTOR-FIELDS AND NAVIER-STOKES EQUATIONS [J].
CHEMIN, JY ;
LERNER, N .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 121 (02) :314-328
[7]  
Chemin JY, 1999, J ANAL MATH, V77, P27, DOI 10.1007/BF02791256
[8]   Well-posedness in critical spaces for barotropic viscous fluids with truly not constant density [J].
Danchin, R. .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1373-1397
[9]   Local theory in critical spaces for compressible viscous and heat-conductive gases [J].
Danchin, R .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2001, 26 (7-8) :1183-1233
[10]  
DAVEIGA HB, 1995, CR ACAD SCI I-MATH, V321, P405