Principal Component Analysis With Complex Kernel: The Widely Linear Model

被引:43
作者
Papaioannou, Athanasios [1 ]
Zafeiriou, Stefanos [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Comp, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
Complex kernels; machine vision; pattern recognition; principal component analysis (PCA); HILBERT-SPACES; EIGENFACES;
D O I
10.1109/TNNLS.2013.2285783
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nonlinear complex representations, via the use of complex kernels, can be applied to model and capture the nonlinearities of complex data. Even though the theoretical tools of complex reproducing kernel Hilbert spaces (CRKHS) have been recently successfully applied to the design of digital filters and regression and classification frameworks, there is a limited research on component analysis and dimensionality reduction in CRKHS. The aim of this brief is to properly formulate the most popular component analysis methodology, i.e., Principal Component Analysis (PCA), in CRKHS. In particular, we define a general widely linear complex kernel PCA framework. Furthermore, we show how to efficiently perform widely linear PCA in small sample sized problems. Finally, we show the usefulness of the proposed framework in robust reconstruction using Euler data representation.
引用
收藏
页码:1719 / 1726
页数:8
相关论文
共 43 条
[1]   Complex-Valued Signal Processing: The Proper Way to Deal With Impropriety [J].
Adali, Tulay ;
Schreier, Peter J. ;
Scharf, Louis L. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (11) :5101-5125
[2]  
[Anonymous], 1999, 2 INT C AUD VID BAS
[3]   THEORY OF REPRODUCING KERNELS [J].
ARONSZAJN, N .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1950, 68 (MAY) :337-404
[4]   Clifford Support Vector Machines for Classification, Regression, and Recurrence [J].
Bayro-Corrochano, Eduardo Jose ;
Arana-Daniel, Nancy .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2010, 21 (11) :1731-1746
[5]   Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection [J].
Belhumeur, PN ;
Hespanha, JP ;
Kriegman, DJ .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1997, 19 (07) :711-720
[6]   The Augmented Complex Kernel LMS [J].
Bouboulis, Pantelis ;
Theodoridis, Sergios ;
Mavroforakis, Michael .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (09) :4962-4967
[7]   Adaptive Learning in Complex Reproducing Kernel Hilbert Spaces Employing Wirtinger's Subgradients [J].
Bouboulis, Pantelis ;
Slavakis, Konstantinos ;
Theodoridis, Sergios .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2012, 23 (03) :425-438
[8]   Extension of Wirtinger's Calculus to Reproducing Kernel Hilbert Spaces and the Complex Kernel LMS [J].
Bouboulis, Pantelis ;
Theodoridis, Sergios .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (03) :964-978
[9]  
Cristianini N., 2010, An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods
[10]   A Least-Squares Framework for Component Analysis [J].
De la Torre, Fernando .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (06) :1041-1055