Noncyclic geometric phase and its non-Abelian generalization

被引:42
作者
Mostafazadeh, A [1 ]
机构
[1] Koc Univ, Dept Math, TR-80860 Istanbul, Turkey
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1999年 / 32卷 / 46期
关键词
D O I
10.1088/0305-4470/32/46/312
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use the theory of dynamical invariants to yield a simple derivation of noncyclic analogues of the Abelian and non-Abelian geometric phases. This derivation relies only on the principle of gauge invariance and elucidates the existing definitions of the Abelian nancyclic geometric phase. We also discuss the adiabatic limit of the noncyclic geometric phase and compute the adiabatic non-Abelian noncyclic geometric phase for a spin-1 magnetic (or electric) quadrupole interacting with a precessing magnetic (electric) field.
引用
收藏
页码:8157 / 8171
页数:15
相关论文
共 38 条
[1]   PHASE-CHANGE DURING A CYCLIC QUANTUM EVOLUTION [J].
AHARONOV, Y ;
ANANDAN, J .
PHYSICAL REVIEW LETTERS, 1987, 58 (16) :1593-1596
[2]   ON THE REAL AND COMPLEX GEOMETRIC PHASES [J].
AITCHISON, IJR ;
WANELIK, K .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1992, 439 (1905) :25-34
[3]   GEOMETRIC QUANTUM PHASE AND ANGLES [J].
ANANDAN, J ;
AHARONOV, Y .
PHYSICAL REVIEW D, 1988, 38 (06) :1863-1870
[4]   NON-ADIABATIC NON-ABELIAN GEOMETRIC PHASE [J].
ANANDAN, J .
PHYSICS LETTERS A, 1988, 133 (4-5) :171-175
[5]   CHERN NUMBERS, QUATERNIONS, AND BERRY PHASES IN FERMI SYSTEMS [J].
AVRON, JE ;
SADUN, L ;
SEGERT, J ;
SIMON, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 124 (04) :595-627
[6]   TOPOLOGICAL INVARIANTS IN FERMI SYSTEMS WITH TIME-REVERSAL INVARIANCE [J].
AVRON, JE ;
SADUN, L ;
SEGERT, J ;
SIMON, B .
PHYSICAL REVIEW LETTERS, 1988, 61 (12) :1329-1332
[8]   A RELATION BETWEEN THE BERRY AND THE ANANDAN-AHARONOV CONNECTIONS FOR U(N) BUNDLES [J].
BOHM, A ;
MOSTAFAZADEH, A .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (04) :1463-1470
[9]   Proof of Adiabatic law [J].
Born, M. ;
Fock, V. .
ZEITSCHRIFT FUR PHYSIK, 1928, 51 (3-4) :165-180
[10]   NONCYCLIC GEOMETRIC PHASES IN A PROPOSED 2-PHOTON INTERFEROMETRIC EXPERIMENT [J].
CHRISTIAN, J ;
SHIMONY, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (20) :5551-5567