Conformal parameterization for multiply connected domains: combining finite elements and complex analysis

被引:6
作者
Kropf, Everett [1 ]
Yin, Xiaotian [1 ]
Yau, Shing-Tung [1 ]
Gu, Xianfeng David [2 ]
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
[2] SUNY Stony Brook, Stony Brook, NY 11794 USA
关键词
Conformal mapping; Multiply connected domain; Hodge decomposition; Laurent series; Finite elements;
D O I
10.1007/s00366-013-0348-4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Conformal parameterization plays an important role in isogeometric analysis. Genus zero surfaces with multiple boundary components (multiply connected domains) can be conformally mapped onto planar domains with circular holes (circle domains). This work introduces a novel method to compute such conformal mappings combining finite element and complex analysis methods. First, the surface is mapped to planar annulus with concentric circular slits using holomorphic differentials, which is carried out using a finite element method based on Hodge decomposition; second the slit domain is conformally mapped to a circle domain by a Laurent series method. Compared with existing algorithms, the proposed method is more efficient and robust. Numerical experiments demonstrate the efficiency and efficacy of the method.
引用
收藏
页码:441 / 455
页数:15
相关论文
共 51 条
  • [1] Allgower E. L., 1990, Numerical continuation methods, an introduction
  • [2] [Anonymous], 1993, Experiment. Math., DOI [10.1080/10586458.1993.10504266, DOI 10.1080/10586458.1993.10504266]
  • [3] Bobenko A., 2010, ARXIV10052698
  • [4] Variational principles for circle patterns and Koebe's theorem
    Bobenko, AI
    Springborn, BA
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (02) : 659 - 689
  • [5] Bowers PL, 2003, VISUALIZATION AND MATHEMATICS III, P3
  • [6] Chow B, 2003, J DIFFER GEOM, V63, P97
  • [7] A circle packing algorithm
    Collins, CR
    Stephenson, K
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2003, 25 (03): : 233 - 256
  • [8] Radial and circular slit maps of unbounded multiply connected circle domains
    Delillo, T. K.
    Driscoll, T. A.
    Elcrat, A. R.
    Pfaltzgraff, J. A.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2008, 464 (2095): : 1719 - 1737
  • [9] Delillo TK, 2009, ELECTRON T NUMER ANA, V36, P195
  • [10] Schwarz-Christoffel mapping of multiply connected domains
    DeLillo, TK
    Elcrat, AR
    Pfaltzgraff, JA
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2004, 94 (1): : 17 - 47