Combinatorial and machine learning approaches in clustering microarray data

被引:0
作者
Pozzi, Sergio [1 ]
Zoppis, Italo [1 ]
Mauri, Giancarlo [1 ]
机构
[1] Univ Milan, DISCo, I-20122 Milan, Italy
来源
BIOLOGICAL AND ARTIFICIAL INTELLIGENCE ENVIRONMENTS | 2005年
关键词
clustering; support vector; consensus; microarray;
D O I
10.1007/1-4020-3432-6_8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we describe the use of a correlation clustering algorithm [Chaitanya, 2004] to group expression level of genes in a microarray dataset. The clustering problem is formalized as a semi-defined optimization program, based on the correlation provided by two quantities, respectively related to an agreement and a disagreement between a pair of genes. We also intend to validate the role of the correlation clustering algorithm by comparing the results with a support vectors clustering approach [Ben-Hur et al., 2001] that is demonstrated to perform well for many applications.
引用
收藏
页码:63 / 71
页数:9
相关论文
共 17 条
[1]  
ALIZADEH F, 1991, SIAM J OPTIMIZ, V5, P13
[2]  
[Anonymous], 2003, Statistical Analysis of Gene Expression Microarray Data. Interdisciplinary Statistics
[3]  
Bansal N, 2002, ANN IEEE SYMP FOUND, P238, DOI 10.1109/SFCS.2002.1181947
[4]   Support vector clustering [J].
Ben-Hur, A ;
Horn, D ;
Siegelmann, HT ;
Vapnik, V .
JOURNAL OF MACHINE LEARNING RESEARCH, 2002, 2 (02) :125-137
[5]  
CHARIKAR M, 2003, IN PRESS P 44 IEEE F
[6]  
Chen T., 1999, P 3 ANN INT C COMP M, P94
[7]   Cluster analysis and display of genome-wide expression patterns [J].
Eisen, MB ;
Spellman, PT ;
Brown, PO ;
Botstein, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (25) :14863-14868
[8]  
Eisen MB, 1999, METHOD ENZYMOL, V303, P179
[9]  
Fletcher R., 1981, PRACTICAL METHODS OP
[10]   Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming [J].
Goemans, MX ;
Williamson, DP .
JOURNAL OF THE ACM, 1995, 42 (06) :1115-1145