High-dimensional cryptography with spatial modes of light: tutorial

被引:54
作者
Otte, Eileen [1 ]
Nape, Isaac [2 ]
Rosales-Guzman, Carmelo [3 ,4 ]
Denz, Cornelia [1 ]
Forbes, Andrew [2 ]
Ndagano, Bienvenu [5 ]
机构
[1] Univ Munster, Inst Appl Phys, Corrensstr 2-4, D-48149 Munster, Germany
[2] Univ Witwatersrand, Sch Phys, Private Bag 3, ZA-2050 Johannesburg, South Africa
[3] Ctr Invest Opt AC, Loma Bosque 115, Leon 37150, Gto, Spain
[4] Harbin Univ Sci & Technol, Wang Da Heng Collaborat Innovat Ctr Quantum Manip, Harbin 150080, Peoples R China
[5] Univ Glasgow, Sch Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland
基金
欧盟地平线“2020”;
关键词
QUANTUM KEY DISTRIBUTION; ENTANGLEMENT; SECURITY; PHOTONS; FIELD; DIFFRACTION; MECHANICS; CREATION; BEAMS; PROOF;
D O I
10.1364/JOSAB.399290
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Fast and secure sharing of information is among the prime concerns of almost any communication system. While commonly used cryptographic algorithms cannot provide unconditional security, high-dimensional (HD) quantum key distribution (QKD) offers an exceptional means to this end. Here, we provide a tutorial to demonstrate that HD QKD protocols can be implemented in an effective way using optical elements that are known to most optics labs. We use spatial modes of light as our HD basis and show how to simulate QKD experiments with bright classical light, fostering its easy implementation for a more general audience including industry laboratories or laboratory classes in university teaching and in advanced laboratories for validation purposes. In particular, we use orbital angular momentum Bessel-Gaussian modes for our HD QKD demonstration to illustrate and highlight the benefits of using spatial modes as their natural Schmidt basis and self-healing feature. (C) 2020 Optical Society of America
引用
收藏
页码:A309 / A323
页数:15
相关论文
共 91 条
[1]   Large-alphabet quantum key distribution using energy-time entangled bipartite states [J].
Ali-Khan, Irfan ;
Broadbent, Curtis J. ;
Howell, John C. .
PHYSICAL REVIEW LETTERS, 2007, 98 (06)
[2]  
[Anonymous], 1984, P IEEE INT C COMP SY, DOI DOI 10.1016/J.TCS.2014.05.025
[3]   Quantum cryptography using larger alphabets [J].
Bechmann-Pasquinucci, H ;
Tittel, W .
PHYSICAL REVIEW A, 2000, 61 (06) :6
[4]   Witnessing entanglement in an undergraduate laboratory [J].
Beck, Marisol N. ;
Beck, M. .
AMERICAN JOURNAL OF PHYSICS, 2016, 84 (02) :87-94
[5]  
Bennett C. H., 1989, SIGACT News, V20, P78, DOI 10.1145/74074.74087
[6]  
Bennett C. H., 1992, Journal of Cryptology, V5, P3, DOI 10.1007/BF00191318
[7]   Efficient Sorting of Orbital Angular Momentum States of Light [J].
Berkhout, Gregorius C. G. ;
Lavery, Martin P. J. ;
Courtial, Johannes ;
Beijersbergen, Marco W. ;
Padgett, Miles J. .
PHYSICAL REVIEW LETTERS, 2010, 105 (15)
[8]   Secure Quantum Key Distribution over 421 km of Optical Fiber [J].
Boaron, Alberto ;
Boso, Gianluca ;
Rusca, Davide ;
Vulliez, Cedric ;
Autebert, Claire ;
Caloz, Misael ;
Perrenoud, Matthieu ;
Gras, Gaetan ;
Bussieres, Felix ;
Li, Ming-Jun ;
Nolan, Daniel ;
Martin, Anthony ;
Zbinden, Hugo .
PHYSICAL REVIEW LETTERS, 2018, 121 (19)
[9]   Self-reconstruction of a distorted nondiffracting beam [J].
Bouchal, Z ;
Wagner, J ;
Chlup, M .
OPTICS COMMUNICATIONS, 1998, 151 (4-6) :207-211
[10]   Experimental investigation of high-dimensional quantum key distribution protocols with twisted photons [J].
Bouchard, Frederic ;
Heshami, Khabat ;
England, Duncan ;
Fickler, Robert ;
Boyd, Robert W. ;
Englert, Berthold-Georg ;
Sanchez-Soto, Luis L. ;
Karimi, Ebrahim .
QUANTUM, 2018, 2