Lyapunov functions for fractional-order systems in biology: Methods and applications

被引:64
作者
Boukhouima, Adnane [1 ]
Hattaf, Khalid [1 ,2 ]
Lotfi, El Mehdi [1 ]
Mahrouf, Marouane [1 ]
Torres, Delfim F. M. [3 ]
Yousfi, Noura [1 ]
机构
[1] Hassan II Univ, Fac Sci Ben Msik, Lab Anal Modeling & Simulat LAMS, POB 7955 Sidi Othman, Casablanca, Morocco
[2] Ctr Reg Metiers Educ & Format CRMEF, Casablanca 20340, Morocco
[3] Univ Aveiro, Dept Math, Ctr Res & Dev Math & Applicat CIDMA, P-3810193 Aveiro, Portugal
关键词
Nonlinear ordinary differential equations; Fractional calculus; Caputo derivatives; Lyapunov analysis; Stability; Mathematical biology; VIRUS DYNAMICS MODELS; GLOBAL STABILITY; EPIDEMIC MODEL; INFECTION; HIV/AIDS; EQUATION;
D O I
10.1016/j.chaos.2020.110224
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove new estimates of the Caputo derivative of order alpha is an element of (0, 1] for some specific functions. The estimations are shown useful to construct Lyapunov functions for systems of fractional differential equations in biology, based on those known for ordinary differential equations, and therefore useful to determine the global stability of the equilibrium points for fractional systems. To illustrate the usefulness of our theoretical results, a fractional HIV population model and a fractional cellular model are studied. More precisely, we construct suitable Lyapunov functionals to demonstrate the global stability of the free and endemic equilibriums, for both fractional models, and we also perform some numerical simulations that confirm our choices. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 66 条
[1]   A survey on fuzzy fractional differential and optimal control nonlocal evolution equations [J].
Agarwal, Ravi P. ;
Baleanu, Dumitru ;
Nieto, Juan J. ;
Torres, Delfim F. M. ;
Zhou, Yong .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 339 :3-29
[2]   Lyapunov functions for fractional order systems [J].
Aguila-Camacho, Norelys ;
Duarte-Mermoud, Manuel A. ;
Gallegos, Javier A. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (09) :2951-2957
[3]   A fractional-order model of HIV infection: Numerical solution and comparisons with data of patients [J].
Arafa, A. A. M. ;
Rida, S. Z. ;
Khalil, M. .
INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2014, 7 (04)
[4]   On a fractional order Ebola epidemic model [J].
Area, Ivan ;
Batarfi, Hanan ;
Losada, Jorge ;
Nieto, Juan J. ;
Shammakh, Wafa ;
Torres, Angela .
ADVANCES IN DIFFERENCE EQUATIONS, 2015,
[5]   A second order accurate approximation for fractional derivatives with singular and non-singular kernel applied to a HIV model [J].
Arshad, Sadia ;
Defterli, Ozlem ;
Baleanu, Dumitru .
APPLIED MATHEMATICS AND COMPUTATION, 2020, 374
[6]   Global stability for SIRS epidemic models with general incidence rate and transfer from infectious to susceptible [J].
Avila-Vales, Eric J. ;
Cervantes-Perez, Angel G. .
BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2019, 25 (03) :637-658
[7]   A new fractional model and optimal control of a tumor-immune surveillance with non-singular derivative operator [J].
Baleanu, D. ;
Jajarmi, A. ;
Sajjadi, S. S. ;
Mozyrska, D. .
CHAOS, 2019, 29 (08)
[8]  
Baleanu D, 2011, ROM J PHYS, V56, P636
[9]  
Baleanu D., 2017, SERIES COMPLEXITY NO, V5
[10]   Chaos analysis and asymptotic stability of generalized Caputo fractional differential equations [J].
Baleanu, Dumitru ;
Wu, Guo-Cheng ;
Zeng, Sheng-Da .
CHAOS SOLITONS & FRACTALS, 2017, 102 :99-105