VBARMS: A variable block algebraic recursive multilevel solver for sparse linear systems

被引:7
作者
Carpentieri, Bruno [1 ]
Liao, Jia [1 ]
Sosonkina, Masha [2 ]
机构
[1] Univ Groningen, Johann Bernoulli Inst Math & Comp Sci, NL-9747 AG Groningen, Netherlands
[2] Old Dominion Univ, Dept Modeling Simulat & Visualizat Engn, Norfolk, VA 23529 USA
基金
美国国家科学基金会;
关键词
Linear systems; Sparse matrices; Krylov methods; Algebraic preconditioners; Multilevel incomplete LU factorization; Graph compression; ILU PRECONDITIONER; FACTORIZATION; ALGORITHMS; ARMS;
D O I
10.1016/j.cam.2013.04.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Sparse matrices arising from the solution of systems of partial differential equations often exhibit a perfect block structure, meaning that the nonzero blocks in the sparsity pattern are fully dense (and typically small), e.g., when several unknown quantities are associated with the same grid point. Similar block orderings can be sometimes unravelled also on general unstructured matrices, by ordering consecutively rows and columns with a similar sparsity pattern, and treating some zero entries of the reordered matrix as nonzero elements, with a little sacrifice of memory. We show how we can take advantage of these frequently occurring structures in the design of the multilevel incomplete LU factorization preconditioner ARMS (Saad and Suchomel, 2002 [14]) and maximize computational efficiency. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:164 / 173
页数:10
相关论文
共 40 条
[1]  
ANDERSON E., 1999, LAPACK USERSGUIDE, V3rd
[2]  
[Anonymous], 1998, SOFTWARE ENV TOOLS
[3]  
[Anonymous], 2003, ITERATIVE METHODS SP, DOI DOI 10.1137/1.9780898718003
[4]  
Axelsson O., 1972, BIT (Nordisk Tidskrift for Informationsbehandling), V12, P443, DOI 10.1007/BF01932955
[5]  
AXELSSON O, 1989, NUMER MATH, V56, P157, DOI 10.1007/BF01409783
[6]   ALGEBRAIC MULTILEVEL PRECONDITIONING METHODS .2. [J].
AXELSSON, O ;
VASSILEVSKI, PS .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1990, 27 (06) :1569-1590
[8]   Stabilized and block approximate inverse preconditioners for problems in solid and structural mechanics [J].
Benzi, M ;
Kouhia, R ;
Tuma, M .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2001, 190 (49-50) :6533-6554
[9]   Multilevel preconditioners constructed from inverse-based ILUs [J].
Bollhöfer, M ;
Saad, Y .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 27 (05) :1627-1650
[10]   A robust and efficient ILU that incorporates the growth of the inverse triangular factors [J].
Bollhöfer, M .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2003, 25 (01) :86-103