Multiple periodic orbits from Hopf bifurcation in a hierarchical neural network with D n x D n -symmetry and delays q

被引:0
作者
Hu, Haijun [1 ]
Zhang, Xiaoling [1 ]
Huang, Chuangxia [1 ]
Yang, Zhichun [2 ]
Huang, Tingwen [3 ]
机构
[1] Changsha Univ Sci & Technol, Sch Math & Stat, Hunan Prov Key Lab Math Modeling & Anal Engn, Changsha 410114, Hunan, Peoples R China
[2] Chongqing Normal Univ, Coll Math, Chongqing 401331, Peoples R China
[3] Texas A&M Univ Qatar, POB 23874, Doha, Qatar
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Hierarchy; Symmetry; Equivariant bifurcation; Spatio-temporal patterns; Time delay; FUNCTIONAL-DIFFERENTIAL EQUATIONS; NICHOLSONS BLOWFLIES MODEL; NONLINEAR-WAVES; EXPONENTIAL STABILITY; NEURONAL OSCILLATORS; PATTERN-FORMATION; NORMAL FORMS; RING; SYNCHRONIZATION; DYNAMICS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper concerns a model of hierarchical neural network with Dn x Dn-symmetry and time delays. The linear stability of the steady state is obtained via an artful factorization technique of the characteristic equation corresponding to the linearized system. And we also perform a delay-induced Hopf bifurcation analysis involving spatio-temporal patterns of bifurcated periodic solutions relying on the equivariant Hopf bifurcation theory for retarded functional differential equations and the representation method of Lie groups. Some numerical simulations for a simple example are carried out to demonstrate the appli-cation of our theoretical conclusion that multiple periodic orbits could occur simultaneously from Hopf bifurcation in the model. (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:516 / 527
页数:12
相关论文
共 48 条
[1]  
Belair J., 1993, Journal of Dynamics and Differential Equations, V5, P607, DOI 10.1007/BF01049141
[2]   Equivariant Hopf bifurcation in a ring of identical cells with delayed coupling [J].
Campbell, SA ;
Yuan, Y ;
Bungay, SD .
NONLINEARITY, 2005, 18 (06) :2827-2846
[3]   Delayed coupling between two neural network loops [J].
Campbell, SA ;
Edwards, R ;
Van den Driessche, P .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2004, 65 (01) :316-335
[4]   Stability analysis of delayed cellular neural networks [J].
Cao, JD ;
Zhou, DM .
NEURAL NETWORKS, 1998, 11 (09) :1601-1605
[5]   Global exponential stability of Hopfield neural networks [J].
Cao, JD .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2001, 32 (02) :233-236
[6]   CELLULAR NEURAL NETWORKS - APPLICATIONS [J].
CHUA, LO ;
YANG, L .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1988, 35 (10) :1273-1290
[7]   CELLULAR NEURAL NETWORKS - THEORY [J].
CHUA, LO ;
YANG, L .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1988, 35 (10) :1257-1272
[8]   HOPF-BIFURCATION WITH D3 X D3-SYMMETRY [J].
DANGELMAYR, G ;
GUTTINGER, W ;
WEGELIN, M .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1993, 44 (04) :595-638
[9]  
Eccles J. C., 1967, CEREBELLUM NEURONAL, V53
[10]   NORMAL FORMS FOR RETARDED FUNCTIONAL-DIFFERENTIAL EQUATIONS AND APPLICATIONS TO BOGDANOV-TAKENS SINGULARITY [J].
FARIA, T ;
MAGALHAES, LT .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 122 (02) :201-224