The fate of photons absorbed by phytoplankton in the global ocean

被引:61
|
作者
Lin, Hanzhi [1 ]
Kuzminov, Fedor I. [1 ]
Park, Jisoo [2 ]
Lee, SangHoon [2 ]
Falkowski, Paul G. [1 ,3 ]
Gorbunov, Maxim Y. [1 ]
机构
[1] Rutgers State Univ, Dept Marine & Coastal Sci, Environm Biophys & Mol Ecol Program, New Brunswick, NJ 08903 USA
[2] Korea Polar Res Inst, Inchon, South Korea
[3] Rutgers State Univ, Dept Earth & Planetary Sci, Piscataway, NJ USA
基金
俄罗斯科学基金会;
关键词
CHLOROPHYLL FLUORESCENCE; SOUTHERN-OCEAN; PHOTOSYNTHESIS; LIMITATION; ATLANTIC;
D O I
10.1126/science.aab2213
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Solar radiation absorbed by marine phytoplankton can follow three possible paths. By simultaneously measuring the quantum yields of photochemistry and chlorophyll fluorescence in situ, we calculate that, on average, similar to 60% of absorbed photons are converted to heat, only 35% are directed toward photochemical water splitting, and the rest are reemitted as fluorescence. The spatial pattern of fluorescence yields and lifetimes strongly suggests that photochemical energy conversion is physiologically limited by nutrients. Comparison of in situ fluorescence lifetimes with satellite retrievals of solar-induced fluorescence yields suggests that the mean values of the latter are generally representative of the photophysiological state of phytoplankton; however, the signal-to-noise ratio is unacceptably low in extremely oligotrophic regions, which constitute 30% of the open ocean.
引用
收藏
页码:264 / 267
页数:4
相关论文
共 50 条
  • [21] Phytoplankton Size Classes in the Global Ocean at Different Bathymetric Depths
    Huan, Yu
    Sun, Deyong
    Wang, Shengqiang
    Zhang, Hailong
    Li, Zhenghao
    He, Yijun
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [22] Exploring biogeochemical and ecological redundancy in phytoplankton communities in the global ocean
    Dutkiewicz, Stephanie
    Boyd, Philip W.
    Riebesell, Ulf
    GLOBAL CHANGE BIOLOGY, 2021, 27 (06) : 1196 - 1213
  • [23] The CAFE model: A net production model for global ocean phytoplankton
    Silsbe, Greg M.
    Behrenfeld, Michael J.
    Halsey, Kimberly H.
    Milligan, Allen J.
    Westberry, Toby K.
    GLOBAL BIOGEOCHEMICAL CYCLES, 2016, 30 (12) : 1756 - 1777
  • [24] Diel light cycles affect phytoplankton competition in the global ocean
    Tsakalakis, Ioannis
    Follows, Michael J.
    Dutkiewicz, Stephanie
    Follett, Christopher L.
    Vallino, Joseph J.
    GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2022, 31 (09): : 1838 - 1849
  • [25] Modelling the effect of temperature on phytoplankton growth across the global ocean
    Grimaud, Ghujuvan Micaelu
    Le Guennec, Valerie
    Ayata, Sakina-Dorothee
    Mairet, Francis
    Sciandra, Antoine
    Bernard, Olivier
    IFAC PAPERSONLINE, 2015, 48 (01): : 228 - 233
  • [26] Ocean 'Omics: Understanding Phytoplankton and the Global Carbon Cycle.
    Worden, A. Z.
    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, 2013, 54 : S13 - S13
  • [27] Global trends in ocean phytoplankton: a new assessment using revised ocean colour data
    Gregg, Watson W.
    Rousseaux, Cecile S.
    Franz, Bryan A.
    REMOTE SENSING LETTERS, 2017, 8 (12) : 1102 - 1111
  • [28] Absorbed fractions for photons in ellipsoidal volumes
    Amato, E.
    Lizio, D.
    Baldari, S.
    PHYSICS IN MEDICINE AND BIOLOGY, 2009, 54 (20): : N479 - N487
  • [29] Six photons absorbed, one emitted
    Schuster, GB
    PHOTOCHEMISTRY AND PHOTOBIOLOGY, 1997, 65 (06) : R3 - R3
  • [30] A Numerical Model Approach Toward a Settling Process and Feedback Loop of Ocean Microplastics Absorbed Into Phytoplankton Aggregates
    Yoshitake, M.
    Isobe, A.
    Song, Y. K.
    Shim, W. J.
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2023, 128 (05)