Dependence of RF/Analog and Linearity Figure of Merits on Temperature in Ferroelectric FinFET: A Simulation Study

被引:23
作者
Saha, Rajesh [1 ]
Goswami, Rupam [2 ]
Bhowmick, Brinda [3 ]
Baishya, Srimanta [3 ]
机构
[1] Malaviya Natl Inst Technol Jaipur, Dept Elect & Commun Engn, Jaipur 302017, Rajasthan, India
[2] Tezpur Univ, Sch Elect Engn, Tezpur 784028, Assam, India
[3] Natl Inst Technol Silchar, Dept Elect & Commun Engn, Silchar 788010, India
关键词
Temperature; Logic gates; FinFETs; Temperature measurement; Linearity; Transconductance; Frequency control; Ferroelectric FinFET (Fe-FinFET); linearity parameters; RF; analog parameters; temperature; NEGATIVE CAPACITANCE; INTERMODULATION DISTORTION; RF PERFORMANCE; MATERIAL GATE; SOI MOSFETS; DEVICE; HYSTERESIS; MODEL;
D O I
10.1109/TUFFC.2020.2999518
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This article presents a simulation study of the impact of variation in temperature on the transfer characteristics and the RF/analog performance like transconductance ( gm), gate capacitance ( Cgg), cutoff frequency ( ft), and transconductance frequency product (TFP) of the ferroelectric FinFET (Fe-FinFET). In addition, the impact of temperature on the linearity parameters such as higher order harmonics ( gm2 and gm3), second- and third-order voltage intercept points (VIP2 and VIP3), third-order power-intercept point (IIP3), third-order intermodulationdistortion (IMD3), and 1-dB compression point is estimated for wide variation of temperature in the Fe-FinFET. It is seen that temperature has a significant impact on the RF/analog and linearity parameters, and these figure of merits (FoMs) are the functions of temperature. Analysis reports that RF/ analog parameters are suppressed, whereas the linearity FoMs are improved as temperature changed from 250 to 350 K.
引用
收藏
页码:2433 / 2439
页数:7
相关论文
共 32 条
[1]  
[Anonymous], 2011, Sentaurus Device User Guide, V12
[2]  
Böscke TS, 2011, 2011 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM)
[3]   Ferroelectricity in hafnium oxide thin films [J].
Boescke, T. S. ;
Mueller, J. ;
Braeuhaus, D. ;
Schroeder, U. ;
Boettger, U. .
APPLIED PHYSICS LETTERS, 2011, 99 (10)
[4]   Impact of Process Variations on Negative Capacitance FinFET Devices and Circuits [J].
Dutta, Tapas ;
Pahwa, Girish ;
Agarwal, Amit ;
Chauhan, Yogesh Singh .
IEEE ELECTRON DEVICE LETTERS, 2018, 39 (01) :147-150
[5]   Negative capacitance effect in semiconductor devices [J].
Ershov, M ;
Liu, HC ;
Li, L ;
Buchanan, M ;
Wasilewski, ZR ;
Jonscher, AK .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1998, 45 (10) :2196-2206
[6]  
Fitzgerald EA, 2015, IEEE C ELEC DEVICES, P1, DOI 10.1109/EDSSC.2015.7285034
[7]   Device scaling limits of Si MOSFETs and their application dependencies [J].
Frank, DJ ;
Dennard, RH ;
Nowak, E ;
Solomon, PM ;
Taur, Y ;
Wong, HSP .
PROCEEDINGS OF THE IEEE, 2001, 89 (03) :259-288
[8]   Device Circuit Co Design of FEFET Based Logic for Low Voltage Processors [J].
George, Sumitha ;
Aziz, Ahmedullah ;
Li, Xueqing ;
Kim, Moon Seok ;
Datta, Suman ;
Sampson, John ;
Gupta, Sumeet ;
Narayanan, Vijaykrishnan .
2016 IEEE COMPUTER SOCIETY ANNUAL SYMPOSIUM ON VLSI (ISVLSI), 2016, :649-654
[9]   An Investigation of Linearity Performance and Intermodulation Distortion of GME CGT MOSFET for RFIC Design [J].
Ghosh, Pujarini ;
Haldar, Subhasis ;
Gupta, R. S. ;
Gupta, Mridula .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2012, 59 (12) :3263-3268
[10]   Analytic Model for the Surface Potential and Drain Current in Negative Capacitance Field-Effect Transistors [J].
Jimenez, David ;
Miranda, Enrique ;
Godoy, Andres .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2010, 57 (10) :2405-2409