Recent increase in oceanic carbon uptake driven by weaker upper-ocean overturning

被引:278
作者
DeVries, Tim [1 ,2 ]
Holzer, Mark [3 ,4 ]
Primeau, Francois [5 ]
机构
[1] Univ Calif Santa Barbara, Dept Geog, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, Earth Res Inst, Santa Barbara, CA 93106 USA
[3] Univ New South Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[4] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
[5] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA
基金
澳大利亚研究理事会; 美国国家科学基金会;
关键词
ANTHROPOGENIC CARBON; CO2; SINK; TRENDS; VARIABILITY; STORAGE; DISTRIBUTIONS;
D O I
10.1038/nature21068
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The ocean is the largest sink for anthropogenic carbon dioxide (CO2), having absorbed roughly 40 per cent of CO2 emissions since the beginning of the industrial era(1,2). Recent data show that oceanic CO2 uptake rates have been growing over the past decade(3-7), reversing a trend of stagnant or declining carbon uptake during the 1990(8-14). Here we show that ocean circulation variability is the primary driver of these changes in oceanic CO2 uptake over the past several decades. We use a global inverse model to quantify the mean ocean circulation during the 1980s, 1990s and 2000s, and then estimate the impact of decadal circulation changes on the oceanic CO2 sink using a carbon cycling model. We find that during the 1990s an enhanced upper-ocean overturning circulation drove increased outgassing of natural CO2, thus weakening the global CO2 sink. This trend reversed during the 2000s as the overturning circulation weakened. Continued weakening of the upper-ocean overturning is likely to strengthen the CO2 sink in the near future by trapping natural CO2 in the deep ocean, but ultimately may limit oceanic uptake of anthropogenic CO2.
引用
收藏
页码:215 / 218
页数:4
相关论文
共 29 条
[1]  
Bernardello R., J CLIM, V27, P2033
[2]   Impact of Weddell Sea deep convection on natural and anthropogenic carbon in a climate model [J].
Bernardello, Raffaele ;
Marinov, Irina ;
Palter, Jaime B. ;
Galbraith, Eric D. ;
Sarmiento, Jorge L. .
GEOPHYSICAL RESEARCH LETTERS, 2014, 41 (20) :7262-7269
[3]   Pathways of anthropogenic carbon subduction in the global ocean [J].
Bopp, L. ;
Levy, M. ;
Resplandy, L. ;
Sallee, J. B. .
GEOPHYSICAL RESEARCH LETTERS, 2015, 42 (15) :6416-6423
[4]   The oceanic anthropogenic CO2 sink: Storage, air-sea fluxes, and transports over the industrial era [J].
DeVries, Tim .
GLOBAL BIOGEOCHEMICAL CYCLES, 2014, 28 (07) :631-647
[5]   Dynamically and Observationally Constrained Estimates of Water-Mass Distributions and Ages in the Global Ocean [J].
DeVries, Tim ;
Primeau, Francois .
JOURNAL OF PHYSICAL OCEANOGRAPHY, 2011, 41 (12) :2381-2401
[6]  
DiNezio P. N., US CLIVAR VAR, V13, P12
[7]  
England MH, 2014, NAT CLIM CHANGE, V4, P222, DOI [10.1038/NCLIMATE2106, 10.1038/nclimate2106]
[8]   Global trends in surface ocean pCO2 from in situ data [J].
Fay, A. R. ;
McKinley, G. A. .
GLOBAL BIOGEOCHEMICAL CYCLES, 2013, 27 (02) :541-557
[10]   Sustained growth of the Southern Ocean carbon storage in a warming climate [J].
Ito, Takamitsu ;
Bracco, Annalisa ;
Deutsch, Curtis ;
Frenzel, Hartmut ;
Long, Matthew ;
Takano, Yohei .
GEOPHYSICAL RESEARCH LETTERS, 2015, 42 (11) :4516-4522