Fractal Interpolation on a Torus

被引:0
作者
Navascues, M. A. [1 ]
机构
[1] Univ Zaragoza, Dept Matemat Aplicada, Ctr Politecn Super Ingn, Zaragoza 50018, Spain
关键词
Fractal interpolation functions; Interpolation on surfaces; Torus; Fractals;
D O I
10.1007/s10440-008-9284-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A very general method of fractal interpolation on T (1) is proposed in the first place. The approach includes the classical cases using trigonometric functions, periodic splines, etc. but, at the same time, adds a diversity of fractal elements which may be more appropriate to model the complexity of some variables. Upper bounds of the committed error are provided. The arguments avoid the use of derivatives in order to handle a wider framework. The Lebesgue constant of the associated partition plays a key role. The procedure is proved convergent for the interpolation of specific functions with respect to some nodal bases. In a second part, the approximation is then extended to bidimensional tori via tensor product of interpolation spaces. Some sufficient conditions for the convergence of the process in the Fourier case are deduced.
引用
收藏
页码:93 / 104
页数:12
相关论文
共 8 条
[1]  
CHENEY EW, 1966, APPROXIMATION THEORY
[2]  
DZYADYK VK, 1981, UKR MATH J, V33, P543
[3]  
Korneichuk N. P., 1962, SOV MATH DOKL, V3, P1040
[4]  
Lorentz G.G., 1966, APPROXIMATION FUNCTI
[5]   Fractal interpolants on the unit circle [J].
Navascues, M. A. .
APPLIED MATHEMATICS LETTERS, 2008, 21 (04) :366-371
[6]   Fundamental sets of fractal functions [J].
Navascues, M. A. ;
Chand, A. K. B. .
ACTA APPLICANDAE MATHEMATICAE, 2008, 100 (03) :247-261
[7]   A fractal approximation to periodicity [J].
Navascues, M. A. .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2006, 14 (04) :315-325
[8]  
Szabados J., 1990, Interpolation of Functions