SUBDYNAMICS OF FINANCIAL DATA FROM FRACTIONAL FOKKER-PLANCK EQUATION

被引:0
|
作者
Janczura, Joanna [1 ]
Wylomanska, Agnieszka [1 ]
机构
[1] Wroclaw Univ Technol, Inst Math & Comp Sci, Hugo Steinhaus Ctr, Wybrzeze Wyspianskiego 27, PL-50370 Wroclaw, Poland
来源
ACTA PHYSICA POLONICA B | 2009年 / 40卷 / 05期
关键词
ANOMALOUS DIFFUSION; INFERENCE; INDEX; TAIL; TIME;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In exhibition of many real market data we observe characteristic traps. This behavior is especially noticeable for processes corresponding to stock prices. Till now, such economic systems were analyzed in the following manner: before the further investigation trap-data were removed or omitted and then the conventional methods used. Unfortunately, for many observations this approach seems not to be reasonable therefore, we propose an alternative attitude based on the subdiffusion models that demonstrate such characteristic behavior and their corresponding probability distribution function (pdf) is described by the fractional Fokker-Planck equation. In this paper we model market data using subdiffusion with a constant force. We demonstrate properties of the considered systems and propose estimation methods.
引用
收藏
页码:1341 / 1351
页数:11
相关论文
共 50 条
  • [31] Inhomogeneous Fokker-Planck equation from framework of Kaniadakis statistics
    Gomez, Ignacio S.
    da Costa, Bruno G.
    dos Santos, Maike A. F.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 119
  • [32] Curl forces and the nonlinear Fokker-Planck equation
    Wedemann, R. S.
    Plastino, A. R.
    Tsallis, C.
    PHYSICAL REVIEW E, 2016, 94 (06)
  • [33] Solution of the Fokker-Planck Equation with a Logarithmic Potential
    A. Dechant
    E. Lutz
    E. Barkai
    D. A. Kessler
    Journal of Statistical Physics, 2011, 145 : 1524 - 1545
  • [34] Generalized Fokker-Planck equation for superstatistical systems
    Runfola, Claudio
    Pagnini, Gianni
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 467
  • [35] Modeling Anomalous Transport of Cosmic Rays in the Heliosphere Using a Fractional Fokker-Planck Equation
    Palencia, Jose Luis Diaz
    FRACTAL AND FRACTIONAL, 2025, 9 (01)
  • [36] Exact solutions of the fractional time-derivative Fokker-Planck equation: A novel approach
    Abdel-Gawad, Hamdy I.
    Sweilam, Nasser H.
    Al-Mekhlafi, Seham M.
    Baleanu, Dumitru
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (07) : 7861 - 7874
  • [37] Fractional Fokker-Planck subdiffusion in alternating force fields
    Heinsalu, E.
    Patriarca, M.
    Goychuk, I.
    Haenggi, P.
    PHYSICAL REVIEW E, 2009, 79 (04):
  • [38] Maximum principle for controlled fractional Fokker-Planck equations
    Wang, Qiuxi
    ADVANCES IN DIFFERENCE EQUATIONS, 2015,
  • [39] A fractional Fokker-Planck control framework for subdiffusion processes
    Annunziato, M.
    Borzi, A.
    Magdziarz, M.
    Weron, A.
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2016, 37 (02) : 290 - 304
  • [40] Continuous time random walk to a general fractional Fokker-Planck equation on fractal media
    Fu, Hui
    Wu, Guo-Cheng
    Yang, Guang
    Huang, Lan-Lan
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2021, 230 (21-22) : 3927 - 3933