NON-HAMILTONIAN SCHRODINGER SYSTEMS

被引:0
作者
Lucente, Sandra [1 ]
Montefusco, Eugenio [2 ]
机构
[1] Univ Bari, Dipartimento Matemat, I-70125 Bari, Italy
[2] Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S | 2013年 / 6卷 / 03期
关键词
Nonlinear Schrodinger systems; non-hamiltonian systems; local existence; global existence; small data; EXISTENCE;
D O I
10.3934/dcdss.2013.6.761
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study local and global in time existence for the Cauchy Problem of some semilinear Schrodinger systems. In particular we do not assume that the nonlinear term guarantees conservation of charge or energy.
引用
收藏
页码:761 / 770
页数:10
相关论文
共 10 条
[1]  
[Anonymous], 1996, DIFFER INTEGRAL EQU
[2]  
[Anonymous], 1996, Differ. Integral Equ.
[3]  
Cazenave T, 2003, Semilinear Schrodinger Equations
[4]   Decay, symmetry and existence of solutions of semilinear elliptic systems [J].
De Figueiredo, DG ;
Yang, JF .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 33 (03) :211-234
[5]  
DELSANTO D, 1997, PROG NONLIN, V32, P117
[6]   A UNIQUENESS RESULT FOR A SEMILINEAR REACTION-DIFFUSION SYSTEM [J].
ESCOBEDO, M ;
HERRERO, MA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 112 (01) :175-185
[7]   On the blow-up threshold for weakly coupled nonlinear Schrodinger equations [J].
Fanelli, Luca ;
Montefusco, Eugenio .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (47) :14139-14150
[8]   Semilinear Hamiltonian Schrodinger systems [J].
Fanelli, Luca ;
Lucente, Sandra ;
Montefusco, Eugenio .
INTERNATIONAL JOURNAL OF DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS, 2011, 3 (04) :401-422
[9]   DETERMINATION OF BLOW-UP SOLUTIONS WITH MINIMAL MASS FOR NONLINEAR SCHRODINGER-EQUATIONS WITH CRITICAL POWER [J].
MERLE, F .
DUKE MATHEMATICAL JOURNAL, 1993, 69 (02) :427-454
[10]  
Tao T., 2006, CBMS Regional Conference Series in Mathematics, V106