Summarizing techniques that combine three non-parametric scores to detect disease-associated 2-way SNP-SNP interactions

被引:18
作者
Chattopadhyay, Amrita Sengupta [1 ,2 ,4 ,5 ]
Hsiao, Ching-Lin [5 ]
Chang, Chien Ching [5 ]
Lian, Ie-Bin [6 ]
Fann, Cathy S. J. [1 ,3 ,5 ]
机构
[1] Acad Sinica, Taiwan Int Grad Program, Bioinformat Program, Taipei 115, Taiwan
[2] Natl Yang Ming Univ, Inst Biomed Informat, Taipei 112, Taiwan
[3] Natl Yang Ming Univ, Inst Publ Hlth, Taipei 112, Taiwan
[4] Acad Sinica, Inst Informat Sci, Taipei, Taiwan
[5] Acad Sinica, Inst Biomed Sci, Taipei, Taiwan
[6] Natl Changhua Univ Educ, Dept Math, Changhua, Taiwan
关键词
Single-nucleotide-polymorphism (SNP); SNP-SNP interaction; Non-parametric methods; Summary scores; Rheumatoid arthritis (RA); GENE-GENE INTERACTIONS; MULTIFACTOR-DIMENSIONALITY REDUCTION; RHEUMATOID-ARTHRITIS; SUSCEPTIBILITY; POPULATION; CLASSIFICATION; EPISTASIS; SELECTION; SEVERITY; LOCUS;
D O I
10.1016/j.gene.2013.09.041
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Identifying susceptibility genes that influence complex diseases is extremely difficult because loci often influence the disease state through genetic interactions. Numerous approaches to detect disease-associated SNP-SNP interactions have been developed, but none consistently generates high-quality results under different disease scenarios. Using summarizing techniques to combine a number of existing methods may provide a solution to this problem. Here we used three popular non-parametric methods-Gini, absolute probability difference (APD), and entropy to develop two novel summary scores, namely principle component score (PCS) and Z-sum score (ZSS), with which to predict disease-associated genetic interactions. We used a simulation study to compare performance of the non-parametric scores, the summary scores, the scaled-sum score (SSS; used in polymorphism interaction analysis (PIA)), and the multifactor dimensionality reduction (MDR). The non-parametric methods achieved high power, but no non-parametric method outperformed all others under a variety of epistatic scenarios. PCS and ZSS, however, outperformed MDR. PCS, ZSS and SSS displayed controlled type-I-errors (<0.05) compared to GS, APDS, ES (>0.05). A real data study using the genetic-analysis-workshop 16 (GAW 16) rheumatoid arthritis dataset identified a number of interesting SNP-SNP interactions. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:304 / 312
页数:9
相关论文
共 47 条
[1]  
[Anonymous], 1984, OLSHEN STONE CLASSIF, DOI 10.2307/2530946
[2]  
[Anonymous], 1980, Multivariate Analysis
[3]  
[Anonymous], 1983, Generalized Linear Models
[4]   HLA-DQB1 polymorphism determines incidence, onset, and severity of collagen-induced arthritis in transgenic mice - Implications in human rheumatoid arthritis [J].
Bradley, DS ;
Nabozny, GH ;
Cheng, S ;
Zhou, P ;
Griffiths, MM ;
Luthra, HS ;
David, CS .
JOURNAL OF CLINICAL INVESTIGATION, 1997, 100 (09) :2227-2234
[5]  
Breiman L, RANDOM FOREST MACHIN, V45
[6]   Methodological issues in detecting gene-gene interactions in breast cancer susceptibility: a population-based study in Ontario [J].
Briollais, Laurent ;
Wang, Yuanyuan ;
Rajendram, Isaac ;
Onay, Venus ;
Shi, Ellen ;
Knight, Julia ;
Ozcelik, Hilmi .
BMC MEDICINE, 2007, 5 (1)
[7]   Tumour necrosis factor microsatellites and HLA-DRB1*, HLA-DQA1*, and HLA-DQB1*alleles in Peruvian patients with rheumatoid arthritis [J].
Castro, F ;
Acevedo, E ;
Ciusani, E ;
Angulo, JA ;
Wollheim, FA ;
Sandberg-Wollheim, M .
ANNALS OF THE RHEUMATIC DISEASES, 2001, 60 (08) :791-795
[8]   Tree and spline based association analysis of gene-gene interaction models for ischemic stroke [J].
Ccok, NR ;
Zee, RYL ;
Ridker, PM .
STATISTICS IN MEDICINE, 2004, 23 (09) :1439-1453
[9]  
Chanda P, 2009, BMC P, V3, pS72
[10]  
Chen Lianfu, 2009, BMC Proc, V3 Suppl 7, pS6