Ca2+/calmodulin-dependent protein kinase II phosphorylation of the presynaptic protein synapsin I is persistently increased during long-term potentiation

被引:77
作者
Nayak, AS
Moore, CI
Browning, MD
机构
[1] UNIV COLORADO,HLTH SCI CTR,DEPT PHARMACOL,DENVER,CO 80262
[2] UNIV COLORADO,HLTH SCI CTR,PROGRAM NEUROSCI,DENVER,CO 80262
关键词
hippocampus; synaptic plasticity;
D O I
10.1073/pnas.93.26.15451
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Long-term potentiation (LTP) is an increase in synaptic responsiveness thought to be involved in mammalian learning and memory, The localization (presynaptic and/or postsynaptic) of changes underlying LTP has been difficult to resolve with current electrophysiological techniques. Using a biochemical approach, we have addressed this issue and attempted to identify specific molecular mechanisms that may underlie LTP. We utilized a novel multiple-electrode stimulator to produce LTP in a substantial portion of the synapses in a hippocampal CA1 minislice and tested the effects of such stimulation on the presynaptic protein synapsin I. LTP-inducing stimulation produced a long-lasting 6-fold increase in the phosphorylation of synapsin I at its Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) sites without affecting synapsin I levels. This effect was fully blocked by either the N-methyl-D-aspartate receptor antagonist D(-)-2-amino-5-phosphonopentanoic acid (APV) or the CaM kinase II inhibitor KN-62, Our results indicate that LTP expression is accompanied by persistent changes in presynaptic phosphorylation, and specifically that presynaptic CaM kinase II activity and synapsin I phosphorylation may be involved in LTP expression.
引用
收藏
页码:15451 / 15456
页数:6
相关论文
共 41 条
[1]  
BARNES CA, 1994, J NEUROSCI, V14, P5793
[2]   LONG-LASTING POTENTIATION OF SYNAPTIC TRANSMISSION IN DENTATE AREA OF ANESTHETIZED RABBIT FOLLOWING STIMULATION OF PERFORANT PATH [J].
BLISS, TVP ;
LOMO, T .
JOURNAL OF PHYSIOLOGY-LONDON, 1973, 232 (02) :331-356
[3]   ACTIVATORS OF PROTEIN-KINASE-C INCREASE THE PHOSPHORYLATION OF THE SYNAPSINS AT SITES PHOSPHORYLATED BY CAMP-DEPENDENT AND CA2+ CALMODULIN-DEPENDENT PROTEIN-KINASES IN THE RAT HIPPOCAMPAL SLICE [J].
BROWNING, MD ;
DUDEK, EM .
SYNAPSE, 1992, 10 (01) :62-70
[4]   DEPHOSPHORYLATED SYNAPSIN-I ANCHORS SYNAPTIC VESICLES TO ACTIN CYTOSKELETON - AN ANALYSIS BY VIDEOMICROSCOPY [J].
CECCALDI, PE ;
GROHOVAZ, F ;
BENFENATI, F ;
CHIEREGATTI, E ;
GREENGARD, P ;
VALTORTA, F .
JOURNAL OF CELL BIOLOGY, 1995, 128 (05) :905-912
[5]   SYNAPSIN-I (PROTEIN-I), A NERVE TERMINAL-SPECIFIC PHOSPHOPROTEIN .2. ITS SPECIFIC ASSOCIATION WITH SYNAPTIC VESICLES DEMONSTRATED BY IMMUNOCYTOCHEMISTRY IN AGAROSE-EMBEDDED SYNAPTOSOMES [J].
DECAMILLI, P ;
HARRIS, SM ;
HUTTNER, WB ;
GREENGARD, P .
JOURNAL OF CELL BIOLOGY, 1983, 96 (05) :1355-1373
[6]   LONG-TERM POTENTIATION OF THE PERFORANT PATH INVIVO IS ASSOCIATED WITH INCREASED GLUTAMATE RELEASE [J].
DOLPHIN, AC ;
ERRINGTON, ML ;
BLISS, TVP .
NATURE, 1982, 297 (5866) :496-498
[7]   LONG-TERM POTENTIATION AND DEPRESSION OF SYNAPTIC RESPONSES IN RAT HIPPOCAMPUS - LOCALIZATION AND FREQUENCY DEPENDENCY [J].
DUNWIDDIE, T ;
LYNCH, G .
JOURNAL OF PHYSIOLOGY-LONDON, 1978, 276 (MAR) :353-367
[8]   TRIFLUOPERAZINE INHIBITS HIPPOCAMPAL LONG-TERM POTENTIATION AND THE PHOSPHORYLATION OF A 40,000 DALTON PROTEIN [J].
FINN, RC ;
BROWNING, M ;
LYNCH, G .
NEUROSCIENCE LETTERS, 1980, 19 (01) :103-108
[10]  
FUKUNAGA K, 1993, J BIOL CHEM, V268, P7863