共 31 条
A variational Bayesian strategy for solving the DOA estimation problem in sparse array
被引:14
作者:
Yang, Jie
[1
]
Yang, Yixin
[1
]
Lu, Jieyi
[1
]
机构:
[1] Northwestern Polytech Univ, Minist Ind & Informat Technol, Key Lab Ocean Acoust & Sensing, Xian 710072, Shaanxi, Peoples R China
基金:
国家重点研发计划;
中国国家自然科学基金;
关键词:
Direction-of-arrival (DOA) estimation;
Sparse array;
Hierarchical prior;
Maximum a posteriori (MAP);
Variational inference;
OF-ARRIVAL ESTIMATION;
DEFINITE TOEPLITZ COMPLETION;
LINEAR ANTENNA-ARRAYS;
APPROXIMATION;
PERSPECTIVE;
D O I:
10.1016/j.dsp.2019.03.011
中图分类号:
TM [电工技术];
TN [电子技术、通信技术];
学科分类号:
0808 ;
0809 ;
摘要:
This paper reformulates the problem of direction-of-arrival (DOA) estimation for sparse array from a variational Bayesian perspective. In this context, we propose a hierarchical prior for the signal coefficients that amounts marginally to a sparsity-inducing penalty in maximum a posterior (MAP) estimation. Further, the specific hierarchy gives rise to a variational inference technique which operates in latent variable space iteratively. Our hierarchical formulation of the prior allow users to model the sparsity of the unknown signal with a high degree, and the corresponding Bayesian algorithm leads to sparse estimators reflecting posterior information beyond the mode. We provide experimental results with synthetic signals and compare with state-of-the-art DOA estimation algorithm, in order to demonstrate the superior performance of the proposed approach. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:28 / 35
页数:8
相关论文