A variational Bayesian strategy for solving the DOA estimation problem in sparse array

被引:14
作者
Yang, Jie [1 ]
Yang, Yixin [1 ]
Lu, Jieyi [1 ]
机构
[1] Northwestern Polytech Univ, Minist Ind & Informat Technol, Key Lab Ocean Acoust & Sensing, Xian 710072, Shaanxi, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Direction-of-arrival (DOA) estimation; Sparse array; Hierarchical prior; Maximum a posteriori (MAP); Variational inference; OF-ARRIVAL ESTIMATION; DEFINITE TOEPLITZ COMPLETION; LINEAR ANTENNA-ARRAYS; APPROXIMATION; PERSPECTIVE;
D O I
10.1016/j.dsp.2019.03.011
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper reformulates the problem of direction-of-arrival (DOA) estimation for sparse array from a variational Bayesian perspective. In this context, we propose a hierarchical prior for the signal coefficients that amounts marginally to a sparsity-inducing penalty in maximum a posterior (MAP) estimation. Further, the specific hierarchy gives rise to a variational inference technique which operates in latent variable space iteratively. Our hierarchical formulation of the prior allow users to model the sparsity of the unknown signal with a high degree, and the corresponding Bayesian algorithm leads to sparse estimators reflecting posterior information beyond the mode. We provide experimental results with synthetic signals and compare with state-of-the-art DOA estimation algorithm, in order to demonstrate the superior performance of the proposed approach. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:28 / 35
页数:8
相关论文
共 31 条
[21]   Weighted SPICE: A unifying approach for hyperparameter-free sparse estimation [J].
Stoica, Petre ;
Zachariah, Dave ;
Li, Jian .
DIGITAL SIGNAL PROCESSING, 2014, 33 :1-12
[22]   SPICE and LIKES: Two hyperparameter-free methods for sparse-parameter estimation [J].
Stoica, Petre ;
Babu, Prabhu .
SIGNAL PROCESSING, 2012, 92 (07) :1580-1590
[23]   Sparse Bayesian learning and the relevance vector machine [J].
Tipping, ME .
JOURNAL OF MACHINE LEARNING RESEARCH, 2001, 1 (03) :211-244
[24]   The Variational Approximation for Bayesian Inference Life after the EM algorithm [J].
Tzikas, Dimitris G. ;
Likas, Aristidis C. ;
Galatsanos, Nikolaos P. .
IEEE SIGNAL PROCESSING MAGAZINE, 2008, 25 (06) :131-146
[25]   Sparse Sensing With Co-Pprime Samplers and Arrays [J].
Vaidyanathan, Palghat P. ;
Pal, Piya .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (02) :573-586
[26]   An empirical Bayesian strategy for solving the, simultaneous sparse approximation problem [J].
Wipf, David P. ;
Rao, Bhaskar D. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2007, 55 (07) :3704-3716
[27]   Sparse Bayesian learning for basis selection [J].
Wipf, DP ;
Rao, BD .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2004, 52 (08) :2153-2164
[28]   Direction-of-arrival estimation in the presence of unknown nonuniform noise fields [J].
Wu, Yuntao ;
Hou, Chaohuan ;
Liao, Guisheng ;
Guo, Qinghua .
IEEE JOURNAL OF OCEANIC ENGINEERING, 2006, 31 (02) :504-510
[29]   A Super-Resolution Direction of Arrival Estimation Algorithm for Coprime Array via Sparse Bayesian Learning Inference [J].
Yang, Jie ;
Yang, Yixin ;
Liao, Guisheng ;
Lei, Bo .
CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2018, 37 (05) :1907-1934
[30]   An efficient off-grid DOA estimation approach for nested array signal processing by using sparse Bayesian learning strategies [J].
Yang, Jie ;
Liao, Guisheng ;
Li, Jun .
SIGNAL PROCESSING, 2016, 128 :110-122