A variational Bayesian strategy for solving the DOA estimation problem in sparse array

被引:14
作者
Yang, Jie [1 ]
Yang, Yixin [1 ]
Lu, Jieyi [1 ]
机构
[1] Northwestern Polytech Univ, Minist Ind & Informat Technol, Key Lab Ocean Acoust & Sensing, Xian 710072, Shaanxi, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Direction-of-arrival (DOA) estimation; Sparse array; Hierarchical prior; Maximum a posteriori (MAP); Variational inference; OF-ARRIVAL ESTIMATION; DEFINITE TOEPLITZ COMPLETION; LINEAR ANTENNA-ARRAYS; APPROXIMATION; PERSPECTIVE;
D O I
10.1016/j.dsp.2019.03.011
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper reformulates the problem of direction-of-arrival (DOA) estimation for sparse array from a variational Bayesian perspective. In this context, we propose a hierarchical prior for the signal coefficients that amounts marginally to a sparsity-inducing penalty in maximum a posterior (MAP) estimation. Further, the specific hierarchy gives rise to a variational inference technique which operates in latent variable space iteratively. Our hierarchical formulation of the prior allow users to model the sparsity of the unknown signal with a high degree, and the corresponding Bayesian algorithm leads to sparse estimators reflecting posterior information beyond the mode. We provide experimental results with synthetic signals and compare with state-of-the-art DOA estimation algorithm, in order to demonstrate the superior performance of the proposed approach. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:28 / 35
页数:8
相关论文
共 31 条
[1]   Positive-definite Toeplitz completion in DOA estimation for nonuniform linear antenna arrays - part II: Partially augmentable arrays [J].
Abramovich, YI ;
Spencer, NK ;
Gorokhov, AY .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (06) :1502-1521
[2]   Positive-definite Toeplitz completion in DOA estimation for nonuniform linear antenna arrays - Part I: Fully augmentable arrays [J].
Abramovich, YI ;
Gray, DA ;
Gorokhov, AY ;
Spencer, NK .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (09) :2458-2471
[3]  
Bazzi A, 2016, IEEE INT SYMP SIGNAL, P197, DOI 10.1109/ISSPIT.2016.7886034
[4]  
Das A., 2018, IEEE J OCEANIC ENG, V99, P1
[5]   Comparison of Two Hyperparameter-Free Sparse Signal Processing Methods for Direction-of-Arrival Tracking in the HF97 Ocean Acoustic Experiment [J].
Das, Anup ;
Zachariah, Dave ;
Stoica, Petre .
IEEE JOURNAL OF OCEANIC ENGINEERING, 2018, 43 (03) :725-734
[6]   Adaptive sparseness for supervised learning [J].
Figueiredo, MAT .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2003, 25 (09) :1150-1159
[7]   One- and two-dimensional direction-of-arrival estimation: An overview of search-free techniques [J].
Gershman, Alex B. ;
Ruebsamen, Michael ;
Pesavento, Marius .
SIGNAL PROCESSING, 2010, 90 (05) :1338-1349
[8]   Covariance sparsity-aware DOA estimation for nonuniform noise [J].
He, Zhen-Qing ;
Shi, Zhi-Ping ;
Huang, Lei .
DIGITAL SIGNAL PROCESSING, 2014, 28 :75-81
[9]   THE UNIFYING ROLE OF THE COARRAY IN APERTURE SYNTHESIS FOR COHERENT AND INCOHERENT IMAGING [J].
HOCTOR, RT ;
KASSAM, SA .
PROCEEDINGS OF THE IEEE, 1990, 78 (04) :735-752
[10]   Two decades of array signal processing research - The parametric approach [J].
Krim, H ;
Viberg, M .
IEEE SIGNAL PROCESSING MAGAZINE, 1996, 13 (04) :67-94