Melamine-formaldehyde derived porous carbons for adsorption of CO2 capture

被引:70
|
作者
Tiwari, Deepak [1 ]
Goel, Chitrakshi [1 ,2 ]
Bhunia, Haripada [1 ]
Bajpai, Pramod K. [1 ]
机构
[1] Thapar Univ, Dept Chem Engn, Patiala 147004, Punjab, India
[2] Univ Ghent, Lab Chem Technol, Technol Pk 914, B-9052 Ghent, Belgium
关键词
CO2; capture; Nanocasting; Melamine formaldehyde; Adsorption kinetics; Isotherm; ACTIVATED CARBON; NANOSTRUCTURED CARBONS; ADSORBENTS; EQUILIBRIA; SORBENTS; KINETICS; DIOXIDE; SILICA;
D O I
10.1016/j.jenvman.2017.04.013
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this work, we report carbon adsorbents obtained from high nitrogen content melamine-formaldehyde resin as starting material and mesoporous zeolite MCM-41 as template through nanocasting technique. To synthesize different carbon structure adsorbents with improved textural and surface properties, the material undergo carbonization followed by physical activation under CO2 atmosphere at different temperatures. Characterizations of the adsorbents using SEM, TEM, XPS, nitrogen sorption, CHN, and TPD have been carried out. Characterization results reveal the development of nanostructured carbon adsorbents with better texture and surface properties as compared to the sample prepared by direct carbonization. Sample prepared at carbonization-activation temperature of 700 degrees C shows highest basicity, surface area (193.28 m(2) g(-1)) and pore volume (032 cm(3) g(-1)). Performance evaluation of adsorbent was performed thermo gravimetrically at different temperatures and concentrations and was found that the adsorbent synthesized at 700 degrees C exhibit highest CO2 uptake of 0.93 mmol g(-1) with nitrogen content of 22.73%. It was found that both surface area and nitrogen functional group have a major impact on adsorption capacity. Physiosorption process was confirmed by a decrease in adsorption capacity with increase in temperature. Three kinetic models and isotherms were used in this study and found that fractional order kinetic model and Freundlich isotherm best fitted with the experimental data. Isotherm study depicts the heterogeneous nature of adsorbent surface. Adsorbent exhibited complete regenerability and was stable over four adsorption-desorption cycles. Low value of isosteric heat of adsorption of 15.75 kJ mol(-1), indicates physiosorption process. Negative value of Delta G(0) and Delta H-0 confirms spontaneous, feasible and exothermic nature of adsorption process. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:415 / 427
页数:13
相关论文
共 50 条
  • [1] Silica-templated melamine-formaldehyde resin derived adsorbents for CO2 capture
    Pevida, C.
    Drage, T. C.
    Snape, C. E.
    CARBON, 2008, 46 (11) : 1464 - 1474
  • [2] Enhanced CO2 Adsorption Capacity in Highly Porous Carbon Materials Derived from Melamine-Formaldehyde Resin
    Tian, Lifeng
    Zhi, Yue
    Yu, Qiyun
    Xu, Qianyu
    Demir, Muslum
    Colak, Suleyman Gokhan
    Farghaly, Ahmed A.
    Wang, Linlin
    Hu, Xin
    ENERGY & FUELS, 2024, 38 (14) : 13186 - 13195
  • [3] Urea-formaldehyde derived porous carbons for adsorption of CO2
    Tiwari, Deepak
    Bhunia, Haripada
    Bajpai, Pramod K.
    RSC ADVANCES, 2016, 6 (113): : 111842 - 111855
  • [4] The preparation of a porous melamine-formaldehyde adsorbent grafted with polyethyleneimine and its CO2 adsorption behavior
    Yin, Fengqin
    Peng, Peixuan
    Mo, Wenjie
    Chen, Shuixia
    Xu, Teng
    NEW JOURNAL OF CHEMISTRY, 2017, 41 (13) : 5297 - 5304
  • [5] Simple synthesis of porous melamine-formaldehyde resins by low temperature solvothermal method and its CO2 adsorption properties
    Yin, F.
    Xu, T.
    Wang, S.
    Chen, S.
    EXPRESS POLYMER LETTERS, 2017, 11 (11): : 873 - 884
  • [6] Natural Products Derived Porous Carbons for CO2 Capture
    Khosrowshahi, Mobin Safarzadeh
    Mashhadimoslem, Hossein
    Shayesteh, Hadi
    Singh, Gurwinder
    Khakpour, Elnaz
    Guan, Xinwei
    Rahimi, Mohammad
    Maleki, Farid
    Kumar, Prashant
    Vinu, Ajayan
    ADVANCED SCIENCE, 2023, 10 (36)
  • [7] Absorption/adsorption properties of porous phenolic-formaldehyde and melamine-formaldehyde polymers
    Goworek, J
    Derylo-Marczewska, A
    Stefaniak, W
    Zgrajka, W
    Kusak, R
    MATERIALS CHEMISTRY AND PHYSICS, 2003, 77 (01) : 276 - 280
  • [8] Mesoporous carbon adsorbents from melamine-formaldehyde resin using nanocasting technique for CO2 adsorption
    Goel, Chitrakshi
    Bhunia, Haripada
    Bajpai, Pramod K.
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2015, 32 : 238 - 248
  • [9] CO2 capture via porous carbons
    Tarkunde, Yash
    Li, Yilun
    Tour, James
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [10] Lignin-derived porous carbons for efficient CO2 adsorption
    Zhao, Jing
    Zhang, Wenjie
    Wang, Qichang
    Shen, Dekui
    Wang, Zhanghong
    CARBON CAPTURE SCIENCE & TECHNOLOGY, 2024, 13