Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode

被引:817
作者
Liu, Yayuan [1 ]
Lin, Dingchang [1 ]
Liang, Zheng [1 ]
Zhao, Jie [1 ]
Yan, Kai [1 ]
Cui, Yi [1 ,2 ]
机构
[1] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[2] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA
来源
NATURE COMMUNICATIONS | 2016年 / 7卷
关键词
ELECTROCHEMICAL-BEHAVIOR; CURRENT COLLECTORS; BATTERIES; ELECTRODES; ELECTROLYTES; DEPOSITION; MECHANISMS; LI7LA3ZR2O12; PERFORMANCE; SYSTEMS;
D O I
10.1038/ncomms10992
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Lithium metal is the ideal anode for the next generation of high-energy-density batteries. Nevertheless, dendrite growth, side reactions and infinite relative volume change have prevented it from practical applications. Here, we demonstrate a promising metallic lithium anode design by infusing molten lithium into a polymeric matrix. The electrospun polyimide employed is stable against highly reactive molten lithium and, via a conformal layer of zinc oxide coating to render the surface lithiophilic, molten lithium can be drawn into the matrix, affording a nano-porous lithium electrode. Importantly, the polymeric backbone enables uniform lithium stripping/plating, which successfully confines lithium within the matrix, realizing minimum volume change and effective dendrite suppression. The porous electrode reduces the effective current density; thus, flat voltage profiles and stable cycling of more than 100 cycles is achieved even at a high current density of 5 mA cm(-2) in both carbonate and ether electrolyte. The advantages of the porous, polymeric matrix provide important insights into the design principles of lithium metal anodes.
引用
收藏
页数:9
相关论文
共 46 条
  • [41] Electrolytes and Interphases in Li-Ion Batteries and Beyond
    Xu, Kang
    [J]. CHEMICAL REVIEWS, 2014, 114 (23) : 11503 - 11618
  • [42] Lithium metal anodes for rechargeable batteries
    Xu, Wu
    Wang, Jiulin
    Ding, Fei
    Chen, Xilin
    Nasybutin, Eduard
    Zhang, Yaohui
    Zhang, Ji-Guang
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (02) : 513 - 537
  • [43] Ultrathin Two-Dimensional Atomic Crystals as Stable Interfacial Layer for Improvement of Lithium Metal Anode
    Yan, Kai
    Lee, Hyun-Wook
    Gao, Teng
    Zheng, Guangyuan
    Yao, Hongbin
    Wang, Haotian
    Lu, Zhenda
    Zhou, Yu
    Liang, Zheng
    Liu, Zhongfan
    Chu, Steven
    Cui, Yi
    [J]. NANO LETTERS, 2014, 14 (10) : 6016 - 6022
  • [44] Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes
    Yang, Chun-Peng
    Yin, Ya-Xia
    Zhang, Shuai-Feng
    Li, Nian-Wu
    Guo, Yu-Guo
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [45] A novel high energy density rechargeable lithium/air battery
    Zhang, Tao
    Imanishi, Nobuyuki
    Shimonishi, Yuta
    Hirano, Atsushi
    Takeda, Yasuo
    Yamamoto, Osamu
    Sammes, Nigel
    [J]. CHEMICAL COMMUNICATIONS, 2010, 46 (10) : 1661 - 1663
  • [46] Zheng GY, 2014, NAT NANOTECHNOL, V9, P618, DOI [10.1038/NNANO.2014.152, 10.1038/nnano.2014.152]