Small size designs in nonlinear models computed by stochastic optimization

被引:0
作者
Gauchi, JP [1 ]
Pázman, A [1 ]
机构
[1] INRA, Biometr Unit, Jouy En Josas, France
来源
MODA 7 - ADVANCES IN MODEL-ORIENTED DESIGN AND ANALYSIS, PROCEEDINGS | 2004年
关键词
A- and D-optimality; distribution of estimators; Mean Square Error;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Optimality criteria, that are functions of the mean square error matrix, are expressed as integrals of the density of the parameter estimator. The optimum design is obtained by an accelerated stochastic optimization method. The estimator is modified to reflect prior knowledge about the parameters, and to take into account the boundary of the parameter space. Results of Pazman and Pronzato (1992) are extended and improved by that. Computer results are presented on examples.
引用
收藏
页码:71 / 79
页数:9
相关论文
共 16 条
[1]   A DYNAMIC APPROACH TO PREDICTING BACTERIAL-GROWTH IN FOOD [J].
BARANYI, J ;
ROBERTS, TA .
INTERNATIONAL JOURNAL OF FOOD MICROBIOLOGY, 1994, 23 (3-4) :277-294
[2]   MATHEMATICS OF PREDICTIVE FOOD MICROBIOLOGY [J].
BARANYI, J ;
ROBERTS, TA .
INTERNATIONAL JOURNAL OF FOOD MICROBIOLOGY, 1995, 26 (02) :199-218
[3]   MULTIDIMENSIONAL STOCHASTIC APPROXIMATION METHODS [J].
BLUM, JR .
ANNALS OF MATHEMATICAL STATISTICS, 1954, 25 (04) :737-744
[4]   Constrained design strategies for improving normal approximations in nonlinear regression problems [J].
Clyde, M ;
Chaloner, K .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2002, 104 (01) :175-196
[5]   STOCHASTIC APPROXIMATION OF MINIMA WITH IMPROVED ASYMPTOTIC SPEED [J].
FABIAN, V .
ANNALS OF MATHEMATICAL STATISTICS, 1967, 38 (01) :191-&
[6]  
GAUCHI JP, 1994, 26 JOURN STAT ASU NE, P317
[7]  
GAUCHI JP, 1999, THESIS CNAM PARIS
[8]  
GAUCHI JP, 2003, 20037 INRA BIOM UN
[9]   HIGHER-DIMENSIONAL NONLINEAR-REGRESSION - A STATISTICAL USE OF THE RIEMANNIAN CURVATURE TENSOR [J].
PAZMAN, A .
STATISTICS, 1993, 25 (01) :17-25
[10]   NONLINEAR EXPERIMENTAL-DESIGN BASED ON THE DISTRIBUTION OF ESTIMATORS [J].
PAZMAN, A ;
PRONZATO, L .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1992, 33 (03) :385-402