Skew Motzkin Paths

被引:3
作者
Lu, Qing Lin [1 ]
机构
[1] Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Peoples R China
基金
中国国家自然科学基金;
关键词
Dyck path; Motzkin path; skew Motzkin path; enumeration;
D O I
10.1007/s10114-016-5292-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the class S of skew Motzkin paths, i.e., of those lattice paths that are in the first quadrat, which begin at the origin, end on the x-axis, consist of up steps U = (1,1), down steps D = (1,-1), horizontal steps H = (1, 0), and left steps L = (-1,-1), and such that up steps never overlap with left steps. Let S-n be the set of all skew Motzkin paths of length n and let s(n) - |S-n |. Firstly we derive a counting formula, a recurrence and a convolution formula for sequence {s(n) } (n >= 0). Then we present several involutions on S-n and consider the number of their fixed points. Finally we consider the enumeration of some statistics on S-n .
引用
收藏
页码:657 / 667
页数:11
相关论文
共 50 条
[41]   Enumerating triangulation paths [J].
Durnitrescu, A ;
Gärtner, G ;
Pedoni, S ;
Welzl, E .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2001, 20 (1-2) :3-12
[42]   Counting Temporal Paths [J].
Enright, Jessica ;
Meeks, Kitty ;
Molter, Hendrik .
ALGORITHMICA, 2025, 87 (05) :736-782
[44]   Lattice paths inside a table [J].
Yaqubi, Daniel ;
Ghouchan, Mohammad Farrokhi Derakhshandeh ;
Zoeram, Hamed Ghasemian .
MATHEMATICAL COMMUNICATIONS, 2023, 28 (02) :181-201
[45]   Dyck paths and restricted permutations [J].
Mansour, Toufik ;
Deng, Eva Y. P. ;
Du, Rosena R. X. .
DISCRETE APPLIED MATHEMATICS, 2006, 154 (11) :1593-1605
[46]   The Degree of Symmetry of Lattice Paths [J].
Sergi Elizalde .
Annals of Combinatorics, 2021, 25 :877-911
[47]   Partially directed paths in a wedge [J].
Janse van Rensburg, E. J. ;
Prellberg, T. ;
Rechnitzer, A. .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2008, 115 (04) :623-650
[48]   The Degree of Symmetry of Lattice Paths [J].
Elizalde, Sergi .
ANNALS OF COMBINATORICS, 2021, 25 (04) :877-911
[49]   Fibonacci and Catalan paths in a wall [J].
Baril, Jean-Luc ;
Ramirez, Jose L. .
DISCRETE MATHEMATICS, 2025, 348 (02)
[50]   ON THE NUMBER OF GENERALIZED DYCK PATHS [J].
Imaoka, Mitsunori ;
Takata, Isao ;
Fujiwara, Yu .
ARS COMBINATORIA, 2010, 97A :269-278