Variational inequalities for generalized quasi-monotone maps

被引:2
作者
Kang, MK [1 ]
Lee, BS
机构
[1] Dong Eui Univ, Dept Math, Pusan 614714, South Korea
[2] Kyungsung Univ, Dept Math, Pusan 608736, South Korea
关键词
M-eta-quasimonotone; eta-quasimonotone; M-eta-monotone; eta-monotone; variational inequality problem; KKM-Fan theorem; inner points;
D O I
10.1016/j.aml.2004.01.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a generalized quasi-monotone map and consider existence of solutions to generalized variational inequality problems for generalized quasi-monotone maps. Our result generalizes some theorems in [1]. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:889 / 896
页数:8
相关论文
共 50 条
  • [1] Modified accelerated Bregman projection methods for solving quasi-monotone variational inequalities
    Wang, Zhong-bao
    Sunthrayuth, Pongsakorn
    Adamu, Abubakar
    Cholamjiak, Prasit
    OPTIMIZATION, 2024, 73 (07) : 2053 - 2087
  • [2] A New Method for Solving Monotone Generalized Variational Inequalities
    PhamNgoc Anh
    JongKyu Kim
    Journal of Inequalities and Applications, 2010
  • [3] On solving variational inequality problems involving quasi-monotone operators via modified Tseng's extragradient methods with convergence analysis
    Wairojjana, Nopparat
    Pakkaranang, Nuttapol
    Noinakorn, Supansa
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2022, 27 (01): : 42 - 58
  • [4] Regularization and Iterative Methods for Monotone Variational Inequalities
    Xiubin Xu
    Hong-Kun Xu
    Fixed Point Theory and Applications, 2010
  • [5] Descent method for monotone mixed variational inequalities
    O.V. Pinyagina
    M.S.S. Ali
    Calcolo, 2008, 45 : 1 - 15
  • [6] Variational inequalities of perturbed maximal monotone mapping with applications
    Huang, YS
    Zhou, YY
    APPLIED MATHEMATICS LETTERS, 1996, 9 (04) : 15 - 20
  • [7] Strongly nonlinear variational inequalities and generalized pseudocontractions
    Verma R.U.
    Rendiconti del Circolo Matematico di Palermo, 1999, 48 (2) : 201 - 208
  • [8] MODIFIED SUBGRADIENT EXTRAGRADIENT METHOD WITH INERTIAL EFFECTS FOR MONOTONE VARIATIONAL INEQUALITIES
    Wang, Tao
    Rao, Yongqiang
    Lv, Ping
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2023, 24 (04) : 857 - 867
  • [9] Self-adaptive operator splitting methods for monotone variational inequalities
    Bingsheng He
    Li-Zhi Liao
    Shengli Wang
    Numerische Mathematik, 2003, 94 : 715 - 737
  • [10] Self-Adaptive Implicit Methods for Monotone Variant Variational Inequalities
    Zhili Ge
    Deren Han
    Journal of Inequalities and Applications, 2009