A one-dimensional arterial network model for bypass graft assessment

被引:9
|
作者
Ghigo, A. R. [1 ]
Abou Taam, S. [1 ,2 ]
Wang, X. [1 ]
Lagree, P-Y [1 ]
Fullana, J-M [1 ]
机构
[1] UPMC Univ Paris 06, Sorbonne Univ, UMR 7190, Inst Jean Le Rond dAlembert,CNRS, F-75005 Paris, France
[2] Hop Prive Claude Galien, 20 Route Boussy, F-91480 Quincy Sous Senart, France
关键词
Arterial network; 1D model; Stenosis; Bypass graft; MECHANICAL-PROPERTIES; WAVE-PROPAGATION; BLOOD-FLOW; SIMULATIONS; STENOSIS;
D O I
10.1016/j.medengphy.2017.02.002
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We propose an arterial network model based on one-dimensional hemodynamic equations to study the behavior of different vascular surgical bypass grafts in the case of an arterial occlusive pathology: a stenosis of the Right Iliac artery. We investigate the performances of three different bypass grafts (Aorto-Femoral, Axillo-Femoral and cross-over Femoral) depending on the degree of obstruction of the stenosis. Numerical simulations show that all bypass grafts are efficient since we retrieve in each case the healthy hemodynamics downstream of the stenosed region while ensuring at the same time a global healthy circulation. We analyze in detail the behavior of the Axillo-Femoral bypass graft by performing hundreds of simulations where we vary the values of its Young's modulus [0.1-50 MPa] and radius [0.01-5 cm]. Our analysis shows that Young's modulus and radius of commercial bypass grafts are optimal in terms of hemodynamic considerations. Our numerical findings prove that this model approach can be used to optimize or plan patient-specific surgeries, to numerically assess the viability of bypass grafts and to perform parametric analysis and error propagation evaluations by running extensive simulations. (C) 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:39 / 47
页数:9
相关论文
共 50 条
  • [41] One-dimensional Toy Cosmological Model
    Cardoso, G. J. G.
    Hermogenes, G.
    Devecchi, F. P.
    BRAZILIAN JOURNAL OF PHYSICS, 2019, 49 (04) : 583 - 586
  • [42] ONE-DIMENSIONAL HARMONIC MODEL FOR BIOMOLECULES
    KRIZAN, JE
    BIOPHYSICAL JOURNAL, 1973, 13 (01) : 1 - 7
  • [43] ONE-DIMENSIONAL MODEL OF THE HYDROGEN BOND
    LIPPINCOTT, ER
    SCHROEDER, R
    JOURNAL OF CHEMICAL PHYSICS, 1955, 23 (06): : 1099 - 1106
  • [44] EXCITATIONS IN ONE-DIMENSIONAL HYBBARD MODEL
    IMIN, GV
    FOMICHEV, SV
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1972, 63 (05): : 1894 - +
  • [45] On a one-dimensional model of infection spreading
    Giacomelli, Marco Antonio
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2009, 23 (01) : 92 - 103
  • [46] ONE-DIMENSIONAL MODEL OF A PATTERSON FUNCTION
    BORISOV, SV
    KRISTALLOGRAFIYA, 1973, 18 (05): : 934 - 938
  • [47] One-dimensional periodic Anderson model
    Gulacsi, M.
    MODERN PHYSICS LETTERS B, 2014, 28 (06):
  • [48] One-dimensional model of a Helicon discharge
    Sazontov, V. A.
    Semenov, V. E.
    Smirnov, A. I.
    PLASMA PHYSICS REPORTS, 2007, 33 (11) : 961 - 968
  • [49] One-dimensional model for coherent control
    Phys Rev A, 3 (2132):
  • [50] EXPANSION INTO A VACUUM - A ONE-DIMENSIONAL MODEL
    BERNSTEIN, M
    PERCUS, JK
    PHYSICAL REVIEW A, 1988, 37 (05): : 1642 - 1653