Controlled synthesis of Mn3O4 and MnCO3 in a solvothermal system

被引:79
作者
Yang, Li-Xia [1 ]
Liang, Ying [1 ]
Chen, Hou [1 ]
Meng, Yan-Feng [1 ]
Jiang, Wei [1 ]
机构
[1] Ludong Univ, Sch Chem & Mat Sci, Yantai 264025, Peoples R China
关键词
Inorganic compounds; Nanostructures; Chemical synthesis; THERMAL-DECOMPOSITION; MAGNETIC-PROPERTIES; NANOPARTICLES; NANOCRYSTALLITES; REDUCTION; NANORODS; GROWTH; ROUTE; BIOMINERALIZATION; TRANSFORMATION;
D O I
10.1016/j.materresbull.2009.03.004
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Controlled synthesis of Mn3O4 nanocrystals and MnCO3 aggregates was achieved by a facile solvothermal method using different divalent manganese source in the solvent of N,N-dimethylformamide (DMF) with/without the introduction of poly(vinylpyrrolidone) (PVP). PVP was used as a co-reducing reagent in the controlled formation of MnCO3 crystal. The products were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and selected-area electron diffraction (SAED), Fourier transform infrared (FTIR) spectra, Raman spectrum and magnetic measurement. Higher process temperature and longer solvothermal time were favorable for the formation of MnCO3 single phase using MnCl2 as the manganese source. Mn3O4 nanocrystals were prepared at a relatively lower temperature. MnCO3 aggregates consisted by small nanoparticles have a certain orientation, showing that the nanocrystals formed earlier through oriented aggregation. The size of Mn3O4 nanocrystals was 22.5 +/- 7.3 nm and 7.3 +/- 1.4 nm prepared using MnCl2 and Mn(CH3COO)(2), respectively, at 160 degrees C for 24 h. Raman spectra showed size-dependent characteristics. Smaller Mn3O4 nanoparticle resulted in a red-shift in Raman spectra. Magnetic property of the prepared Mn3O4 nanoparticle was influenced by the size distribution and crystallinity. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1753 / 1759
页数:7
相关论文
共 41 条
[1]   Biomineralization - Naturally aligned nanocrystals [J].
Alivisatos, AP .
SCIENCE, 2000, 289 (5480) :736-737
[2]   Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries [J].
Armstrong, AR ;
Bruce, PG .
NATURE, 1996, 381 (6582) :499-500
[3]   Direct ultrasonic-assisted synthesis of sphere-like nanocrystals of spinel Co3O4 and Mn3O4 [J].
Askarinejad, Azadeh ;
Morsali, Ali .
ULTRASONICS SONOCHEMISTRY, 2009, 16 (01) :124-131
[4]   GROWTH MECHANISMS OF IRON-OXIDE PARTICLES OF DIFFERING MORPHOLOGIES FROM THE FORCED HYDROLYSIS OF FERRIC-CHLORIDE SOLUTIONS [J].
BAILEY, JK ;
BRINKER, CJ ;
MECARTNEY, ML .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1993, 157 (01) :1-13
[5]   Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products [J].
Banfield, JF ;
Welch, SA ;
Zhang, HZ ;
Ebert, TT ;
Penn, RL .
SCIENCE, 2000, 289 (5480) :751-754
[6]  
BERNEY FL, 1905, EMU, V6, P41
[7]   One-minute synthesis of crystalline binary and ternary metal oxide nanoparticles [J].
Bilecka, Idalia ;
Djerdj, Igor ;
Niederberger, Markus .
CHEMICAL COMMUNICATIONS, 2008, (07) :886-888
[8]   Vibrational spectroscopy of bulk and supported manganese oxides [J].
Buciuman, F ;
Patcas, F ;
Craciun, R ;
Zahn, DRT .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 1999, 1 (01) :185-190
[9]   Formation of colloidal CuO nanocrystallites and their spherical aggregation and reductive transformation to hollow CU2O nanospheres [J].
Chang, Y ;
Teo, JJ ;
Zeng, HC .
LANGMUIR, 2005, 21 (03) :1074-1079
[10]  
Ebble T.R.S., 1969, Magnetic Materials