Mean-Field Limit and Semiclassical Expansion of a Quantum Particle System

被引:24
作者
Pezzotti, Federica [1 ]
Pulvirenti, Mario [2 ]
机构
[1] Univ Aquila, Dipartimento Matemat Pura & Applicata, I-67100 Laquila, Italy
[2] Univ Roma La Sapienza, Dipartimento Matemat G Castelnuovo, Rome, Italy
来源
ANNALES HENRI POINCARE | 2009年 / 10卷 / 01期
关键词
CLASSICAL-LIMIT;
D O I
10.1007/s00023-009-0404-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a quantum system constituted by N identical particles interacting by means of a mean-field Hamiltonian. It is well known that, in the limit N -> 8, the one-particle state obeys to the Hartree equation. Moreover, propagation of chaos holds. In this paper, we take care of the h dependence by considering the semiclassical expansion of the N-particle system. We prove that each term of the expansion agrees, in the limit N -> 8, with the corresponding one associated with the Hartree equation. We work in the classical phase space by using the Wigner formalism, which seems to be the most appropriate for the present problem.
引用
收藏
页码:145 / 187
页数:43
相关论文
共 21 条
[1]  
Bardos C., 2000, METHODS APPL ANAL, V7, p275{293
[2]  
BARDOS C, 2002, CR ACAD SCI PARIS 1, V334
[3]  
BRAUN W, 1977, COMMUN MATH PHYS, V56
[4]  
DOBRUSHIN RL, 1979, SOV J FUNCT ANAL, V13
[5]  
ERDOS L, 08043774V1
[6]  
ERDOS L, 2001, ADV THEOR MATH PHYS, V5
[7]   Mean-field- and classical limit of many-body Schrodinger dynamics for bosons [J].
Froehlich, Jierg ;
Graffi, Sandro ;
Schwarz, Simon .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 271 (03) :681-697
[8]  
FROHLICH J, 2007, J PHYS A, V40
[9]  
GINIBRE J, 1979, COMMUN MATH PHYS, V66
[10]  
GINIBRE J, 1979, COMMUN MATH PHYS, V68